
Thoughts On Software Design
By Eamon O’Tuathail

www.clipcode.net

Before we look at how we should go about building software and other knowledge-
intensive products, we should first briefly explore the ideal architectural goals for
delivering useful products. Simply put, what are we really trying to achieve? When we
finish creating a product - how should third parties decide whether it is mediocre,
pretty good or absolutely amazing?

In other areas of life, picking what is “best” is relatively easy – the best car (Pagani,
of course), the best red wine (St. Emillion), the best place to go on holidays (Naples in
Florida) or the best painter (Vermeer, from the lovely Dutch town of Delft) all stand
out as obvious selections. But for software, how do we pick “the best”? Since software
is so varied, a more practical approach might be to consider which characteristics are
we after in selecting the best software? Let's see what we appreciate ...

In one (marketecturishly long) sentence, software should be simple, low-cost, secure,
standards-based, many-core-aware, resource-identified, cloud-suitable, user-focused,
event-driven, agent-delegating, attention-valuing, semantically-arranged, highly-
available, model organized, pattern-following, team-oriented, community-building,
multi-everything, ecosystem-establishing, reseller-/integrator-/ISV-friendly, product-
line-delineated, feature-delivering, design-led, loosely coupled, globalized, accessible,
policy-driven, iteration enhancing, directory-using, graph-publishing, multi-factor
authenticating, transactional, personalizable, highly-innovative, composable, auto-
updating with release channels, data-structuring, experience-sharing, object-
exposing, shell-discoverable and administrable.

Let's briefly explore each of these & see how they bring real benefits to customers.
We'll do this from the viewpoint of software platforms, but note much of this is highly
relevant to all knowledge-intensive products.

Simple

Software is too complex. Too many software engineers with too much time on their
hands have devised ever more complicated platforms and the bewildered end-users
and IT professionals are having a difficult time keeping up. Indeed, this is one of the
key reasons they don't, and instead stick with 5-, 7- and even 10-year old software
platform versions that they are familiar with (but yet lack modern feature sets).
Radically simpler platform design is a key goal.

Low-cost

Software is too expensive. Especially the software that you want. Typically vendors
strip anyway any significant value from their low-end offerings, in the hope of enticing
you to upgrade or hiding the true cost until it is too late and you and your team have
committed many months of work to the platform. Often there is a requirement for
other products, in addition to the one you really want. So one needs to consider the

http://www.clipcode.net/

ii

entire stack that is required, and all costs surrounding that stack. The entire software
platform should be offered at a significantly lower cost.

Secure

A software platform must be secure – in areas such as mandatory two-factor
authentication, always-on encryption, access control, provisioning and role-based
security. Security must be embedded in the platform architecture from the start and
not some later optional add-on.

Standards-based

Open-protocols, open schemas and open APIs – the goal is to be based on open
standards as much as possible. Every API we use, every network protocol we
communicate over and every data schema we use to store knowledge should be based
on open standards.

Many-core-aware

The era of many cored computing has arrived. Moving beyond two core and four core
processors, we are likely to see far more cores per processor (CPU, GPU and hybrid)
and software platforms will need to be designed to properly exploit the massive
additional availability of compute power. Asynchronous programming and parallel
programming (not the same) need to become commonplace.

Resource-identified

Things that interest us – documents, concepts, pages, business contracts, purchase
orders, etc. are all known as resources. Resources are identifiable, securable,
versionable and locatable.

Semantically-arranged

The semantic web is the next great step for software platforms. By exposing resources
as semantic concepts opens the way for very interesting features.

Cloud-suitable

The cloud provides off-premises compute/storage/networking/services and software
must be designed to exploit the specific features of cloud computing with ease.

Questions about “how” / “when” / “where” / “by whom” related to subsystems within
a platform in the cloud around the globe need to be part of early decision making.

User-focused

The user should be at the heart of the design process.

It would be great to have a real end user on the development team, but at least
regularly availability to them is needed so that prompt/accurate user feedback is

iii

available. The development team needs to have close contact with actual packagings
of the platform. How user interact with the platform needs to be given serious
consideration. When users have problems and contact the helpdesk, this critically
important stream of data about where real world problems exist with the platform
should flow back to the development team.

Design-led

A pleasant visual experience is required. Let's face it–most developers are not the
most talented in graphic design. So hire in an experienced design professional for this.

Event-driven

Events happen all the time and software platforms should be designed to identify,
distribute and react to events, in other words, to be event-driven.

Rather than using a timer to check if something happened, or waiting for a client
system to send a request to a server, event producers should be able to immediately
have interested parties informed of what happened and then they can react if needed,
independently of the event producer.

Agent-delegating

Allow automated semantic agents (pieces of software) to work on behave of users and
hosts in order to automatically perform tasks based on events that occur.

Attention-valuing

There needs to be an appreciation that the attention span of humans is highly
valuable, and interruptions are therefore a major cost factor. It is clear knowledge
professionals while doing important work are being excessively interrupted during
their work day by issues that can either be delayed without causing a problem,
automatically responded to, or automatically delegated to another knowledge
professional.

Loosely-coupled

Constant change is a characteristic of modern life, and of modern software platforms.
By creating platforms that are loosely coupled, changes in one area can be isolated
from having ripple effects in other areas.

Highly-available

If users are to entrust their knowledge networks to a platform, it must be resilient to
issues and highly available.

Model-structured

Potential models include Directory Model, Domain Model, Feature Model, Behavior
Model, Learning Model, and many more - all of which can be expressed and integrated

iv

in a Semantic Model. For software products, the code-related models all have a
common fabric that weaves itself through all the models – and that is the source code.

The models can be considered as viewports into the codebase, from different angles.
What each shows is specific to what the model needs to represent, but importantly the
viewports do not conflict with each other.

Pattern-following

Design patterns show tried and trusted ways of solving problems. A platform should
use these where appropriate and create new ones where necessary.

Team-oriented

People work in teams. To achieve any result of significance, a highly collaborative
team needs to work together, and the software platform needs to assist.

Community-building

The marketing folks use terms such as “network effects” and “adoption” to indicate
the value of communities for software platforms. The long-term viability (or lack
thereof) of many platform hinges on building an active community.

Multi-everything

There are many ways of performing tasks. The platform should be multi-protocol,
Multi-view, Multi-channel, Multi-Tenant, Multi-Instance and Multi-paradigm (mobile
app, web, desktop (they have not gone away), speech, TV, wearables, car).

Ecosystem-establishing

Partners power modern software platforms. A platform needs to offer partnership
opportunities. ISVs, system integrators, hosting providers, consultants and trainers all
are part of an ecosystem surrounding successful platform.

Reseller-/Integrator-/ISV- friendly

Resellers, system integrators and ISVs play a key part in the sales process for
software platforms. This needs to be an important consideration in designing a
platform's competitive offerings.

Product-line-delineated

Where multiple products are part of a family, a product line strategy can help

Internationalized

People from around the world should be able to use the platform.

v

Policy-driven

Any decisions should be exposes to power-users and IT professionals as policy. This
surfaces as configuration, templates, workflow, rules & lifecycle.

Directory-using

Identity knowledge should not be scattered across the network. Nether should it is
stored in app-specific silos. Instead should be managed in a controlled environment,
known as a directory with carefully managed access permissions.

Graph-publishing

If identity knowledge needs to be taken out of app-specific silos, then why not all
knowledge. Imagine for an enterprise if all its knowledge were published in a
distributed stored knowledge graph, and all apps and all knowledge professionals
could access all knowledge relevant to their requirements, within security restrictions.

Accessible

People with disabilities should be able to easily use the system. Often features added
for this have more wide-spread usage (e.g. the API for accessibility is widely used for
automated UI testing).

Transactional

Each transaction is identified as being carried out by a named user, when and where it
occurred is recorded, and is atomic.

Personalizable

People are different! They want the platform to work the way they want.

Multi-factor authenticating

Security experts have long realized there are three ways of authentication – what you
know (password or passphrase), what you are (biometrics) and what you have (smart
card or your mobile phone). The best foundation for distributed authentication is a
combination of two or more of these.

Highly-innovative

Software platforms have not changed much over the past few years. A new software
platform should offer significant innovation. If it is just a “me-to” product, why
bother?

Composable

There is a need to build up solutions from composable parts, possibly with different
combinations for different packagings. Composability needs to be added from the

vi

start. It makes sense to have a single composability story, so that internal parts and
third-party parts are composed using the same architecture.

Feature-delivering

A platform needs to deliver features which bring tangible benefits to customers, users
and other stakeholders. Thinking in terms of features allows us to look at a very
important part of platform architecture – what to leave out. If any piece of
functionality does not impact of features that are of benefits to stakeholders, then
serious consideration should be given to not implementing that functionality.

Development teams (even very large ones) cannot create all the functionality they
want, so choices have to be made. The obvious basis for choice is the impact
functionality will have on key features of the platform.

Iteration-enhancing

A big system that runs well inevitably starts from a small system that runs well, and it
has been shown that an iterative agile approach to software development is the
optimal use of engineering resources.

We need to decide on features that are useful overall, grading then according to
benefit that they deliver to customers, but also grouping them into buckets that make
sense to be created together, and then deciding on an iteration plan. Each iteration
needs to deliver enhancements that are tangible to customers.

Everygreen (auto-updating with release channels)

Software needs to be regularly updated and it is desirable that updates happen
automatically, so that, without human intervention, the deployed software is always
up-to-date. What “up-to-date” means varies depending on the intended use of the
software. There is always a tradeoff in software between maturity of the software and
the latest features. A business team working on a production environment will require
a stable release, whereas an integration team planning to launch a new system may
wish to use a beta release, and software developers may wish to get early access to a
developer release to help them build against what is coming in future, whereas the
really early adopters may wish to have a nightly “canary” build. Consider these
differing releases to be different release channels, that allow users to specify the level
of maturity they require in the software that is to be auto-deployed to their systems.

A nice succinct way of putting all this is to say software installations should be
"everygreen".

Data-structuring

Some folks talk about structured data (they mean SQL), semi-structured data (they
mean XML) and un-structured data (they mean blobs such as audiovisual files), which
this is rediculous terminology, since all data in some way is structured. There are
patterns in all forms of data and such patterns form structures. Pieces of data may
well be structured differently, but there is some form to each piece and there are

vii

numerous benefits to externalizing the structure so that a range of applications (not
just the one that created it) can interact with the data. A text file containing a snippet
of programming code has structure – it can be lexically scanned and parsed to build
an abstract syntax tree. A binary file containing a bitmap has structure – it typically
has numerous blocks, with a metadata block (containing descriptive information about
the document), it usually has a header block containing offsets to data blocks, it will
have a color table block and so on.

Experience-sharing (browser, app, server, cloud, Internet of things)

Software developers and IT professionals are swamped with an ever-increasing flow of
different technologies. They have difficulty keeping up, spend a large amount of time
learning and often work on important projects with a sub-optimal level of experience
of the technologies involved. This has become a major problem for technology
providers and users. If would be of benefit if technologies used in one scenario can be
used elsewhere (browser, app, server, cloud).

Object-exposing

Modern software applications consist of large Framework Models and it can be quite
advantageous to expose a certain amount of this to third parties. Even if the main use
of the application is expected to be via the provided user interface, some (often
important) customers may wish to write their own apps and integrate with your app
via your Framework Model.

An Framework Model may be exposed for direct programmatic access and/or as a
messaging API (it is often a good idea to provide both).

Shell-discoverable

The command shell or command line interface is extremely useful. For interactive
command entry, and scripts and in-app macros, a scripting shell is a valuable tool.
The shell is faster in the hands of an experienced user compared to navigating
possibly multiple levels of menus or ribbons, though it does mean the user needs to
know the shell syntax and the command name. Application developers need to
consider how commands from their applications can be discoverable from the shell.

Administrable

When writing software, we need to strive to ensure it can be administered. For any
non-trivial system that is targetting a large user base, there will be characteristics
that a company's system administrator will wish to configure for multiple groups of
users. Rather than perform the configuration manually at each user's device, it is
obviously better to use some central administrative console to perform a single action
or a small number of actions.

Software developers need to think of the administrator as a very important
stakeholder whose needs should be considered. For many types of software
applications, enterprises are a large market and with a little extra thought on how the
app can be administered at scale, significant additional sales can be made.

