
.NET Intermediate Language (IL)
Stack Engine, IL Fundamentals, Metadata, IL Syntax,

Opcode Injection, Building Compilers, Reflection
Intermediate Language (IL) is .NET’s low-level
platform-independent representation of an executable.
Many .NET developers are content to write high-level
code in an IDE and then compile/run it, oblivious to IL.
More advanced developers and those with specialist
needs are more ambitious – they wish to program
directly in IL, to browse and edit the IL generated for
them by high-level language compilers, to auto-generate
source code from other logical representations, to create
compilers, and to really know “under the hood” how
code runs when using high level languages (to help
optimize performance, aid more precise debugging,etc.)

This course covers all aspects of IL, including the
opcodes, metadata, assembly syntax, compilation/de-
compilation tools, binary file format and .NET’s
reflection (which provides classes to browse existing
assemblies and to emit assemblies directly). We also
examine usage scenarios, such as building your own
compiler and code generation tools.

Attending this course will allow you get a jumpstart on
understanding all aspects of .NET IL, to produce a
variety of code manipulation functionality and gain a
much better appreciation of how .NET code executes.

Contents of One-Day Training Course

Target Audience
This course will interest
advanced .NET developers
who wish to code directly
in IL, or who need a richer
understanding of how their
higher-level code executes,
or who need to create code
generators and specialist
developer tools.

Prerequisites
In-depth knowledge of C#
and all round experience
using the .NET CLR

Experience of language
design, compiler creation
and low-level code
manipulation useful

Review of CLR Issues
Assemblies & modules, how code
 executes, security issues, type loader
CLR architecture from IL viewpoint
Stack-based execution engine

IL Fundamentals
Overall IL Model
Verbose/compact IL
JIT compiler
Hello world in IL

IL Tools
Ilasm.exe, Ildasm.exe
Ngen.exe, PEVerify.exe
Introduction to Structure of IL
PE/COFF headers and sections
Metadata tables
Manifest
Managed code representations

Metadata Fundamentals
Set of tables with very detailed data about
 contained code; Table types and uses

Advanced Metadata
Important tables (ModuleDef, TypeDef,
MethodDef, FieldDef, AssemblyRef,
ModuleRef, ClassLayout, NestedClass

Types, Fields and Methods
The IL instruction set
Use of IL language constructs
How code from high-level .NET
 languages appears in IL

Advanced Types
Signatures, visibility, inheritance, ctors
Primitive/native/managed types

Other IL Features
Unmanaged code
Exception handling/events/delegates

Programming with IL
Writing more complex programs in IL
Coding issues to be aware of
Object interactions in IL

Profiler API
The unmanaged Profiler API allows you to
 add custom code that will be called when
 the CLR is about to JIT IL code
You can change the IL on-the-fly

Code Interactions
Coverage of why and how one might wish
 to programmatically interact with code
Overview of required code services

Reflection
System.Reflection namespace
Dynamically loading & invoking types
Browsing contents of assemblies

Emitting
System.Reflection.Emit.*-Builder classes
Emitting persistent & transient assemblies

.NET Native and IL
.NET Native – concepts and toolchain
Converting from IL to native code

Building Custom IL Tools
Coverage of why and how to
 programmatically interact with IL code
Overview of required code services

Project
How to integrate IL modules in your own
custom project

