
https://www.clipcode.net

Winter 2024
Curriculum

A series of one-day intensive
on-site and remote training courses for

senior knowledge professionals

“The mind is not a vessel to be filled,
but a fire to be kindled” - Plutarch

Copyright (c) 2024 Clipcode Limited - All rights reserved.

Clipcode is a trademark of Clipcode Limited - All rights reserved.

https://www.clipcode.net/

https://www.clipcode.net

Clipcode Academy, 6 Cabinteely Green, Cabinteely, Dublin 18, Ireland

E-Mail: academy@clipcode.com

Clipcode Academy is pleased to announce its latest set of intensive one-day training
courses aimed at senior knowledge professionals, in areas such as mathematics,
software engineering and DevOps.

These courses are available for on-site presentation throughout Europe. Your team
may request them “as is” or as part of a custom course, combined and extended to
suit your specific requirements (e.g. you may design your own course by selecting
modules of interest from different courses, or requesting new modules).

Our courses are based on the most up to date versions of the mathematical theories,
programming languages, operating systems, runtimes, development tools, database
engines and international standards that they cover.

To arrange on-site training, please phone us or e-mail academy@clipcode.com with a
description of the type/location/duration of training you require and the number of
attendees and their experience levels, together with your full contact details.

https://www.clipcode.net/

One Day Intensive Training Course For Senior Knowledge Professionals 3

<Design Your Own Course>
<You decide what goes here>

This is our most popular course!
If you need on-site training for your team, and our
existing courses match your specific needs – excellent!
However, perhaps they partially but not completely
match your requirements, or perhaps your team needs
something more custom. In either case, then go ahead
and design a training course to your own specifications.
We would be willing to write and present it in your
offices to your development team. To design your own
course you identify the target audience & their existing
skill sets, decide what new competencies they need and
then select a coherent set of topics to be covered. You
can treat each of our current courses as a menu of

modules & choose as needed from each. Also you can
identify new topics. Using existing specialist material
we have, and where necessary creating new material
specifically for you and combining this with appropriate
selections from our standard courses, we can come up
with the exact course you need. We work on the basis
that if one client requires a course for a specialist area
now, it is quite likely that others will require it in future.

We consider the new material we create as part of our
ongoing curriculum development initiative and there is
no additional charge for you beyond our normal fees.

Contents of One-Day Training Course

Target Audience
<You decide what

goes here>

Prerequisites
<You decide what

goes here>

<You decide what goes here>
<You decide what goes here>

<You decide what goes here>
<You decide what goes here>

<You decide what goes here>
<You decide what goes here>

<You decide what goes here>
<You decide what goes here>

<You decide what goes here>
<You decide what goes here>

<You decide what goes here>
<You decide what goes here>

One Day Intensive Training Course For Senior Knowledge Professionals

Mathematics Faculty

Mathematics / Foundations
● Fundamentals Of Mathematical Foundations
● Proof Theory
● Type Theory
● Category Theory
● Mathematical Logic
● Linear Logic, Adjoint Logic And Session Types
● Description Logic
● Computation Theory

Mathematics / Structure
● Abstract Algebra
● Linear And Multilinear Algebra
● Graph Theory

One Day Intensive Training Course For Senior Knowledge Professionals 5

Fundamentals Of Mathematical Foundations
Terminology, Tour, Induction, Set Theory, Lambda

Calculus, Complexity, Monad, Number Theory
Like ships passing nearby on a foggy night, each
oblivious to the presence of the other, up to recently
most mathematicians and software engineers ignore the
work of the other. This course is about removing the
fog, and letting developers see what can be achieved in
production environments using really good ideas from
modern mathematics. More and more ideas from
mathematics are beginning to seep into the world of
programming. Many software innovations – from deep
learning to 3D graphics to modern programming type
systems - are based on modern mathematics. All
developers have studied some mathematics at college,

so this course builds on that. It should be considered a
refresher, with an emphasis on practical application, to
bring everyone up to speed with the basics and be ready
to explore more advanced topics.

We pay particular attention to how mathematical ideas
are presented. For example, saying “a monad is just a
monoid in the category of endofunctors” utterly
confuses developers, whereas we prefer “monads are
programmable semicolons” (just used to insert custom
code between each statement) is much clearer, yet
equally accurate.

Contents of One-Day Training Course

Target Audience
This course is aimed at
modern developers who
need a better grasp of how
areas of mathematics can
be practically applied to
programming.

Prerequisites
It is expected attendees
will have completed some
mathematics training as
part of their college
education.

Review Of Fundamentals
The language of mathematics
 (it is really not all Greek!)
A mathematical object has certain
 properties and can be used in operations
Mathematical structures are mathematical
 objects themselves that contains some
 arrangement of mathematical objects
 (often a set or similar, + something extra)

Terminology
Mathematical object (much broader use of
 ‘object’ term compared to programming)
Symbols and (mathematical) variables
Mathematical statement
Proposition, expression, formula
“a proposition is a statement susceptible to
proof, whereas a theorem is such a
statement that has been proven.” (HoTT)

Branches of Mathematics ..
..and their uses in software development
Quantity/Arithmetic; Change/Calculus;
Structure/Algebra; Space/Geometry
Need to describe mathematical universes ..
Mathematical Whirlwind Tour

Quick tour of all of mathematics
So many aspects to it – where do we start?
We like “The Map Of Mathematics”
Which new/unfamiliar parts we should use

Mathematical Induction
Definition by induction, in steps
Base step (e.g. 0) is the starting point
Induction step: builds on base (n)
Example of deductive reasoning

Set Theory
In the past, set theory was considered the
 most suitable approach to the foundations
 of all of mathematics
More recent approaches (e.g. type
 theory, category theory) are better
However, set theory is still an important
 area and worth studying
Deductive system based on first order logic
Law of the excluded middle (LEM)
Axiom of choice, ...

Complexity Theory
Can a computational problem be solved?
If so, how long will it take?
Worst case scenario
Big O notation

Monads
Isolating change in a non-changing world
(think of carefully managed assembly lines
- some steps make changes, others do not)

Lambda Calculus
The three terms (and how they work)
 – variables, abstraction and application
Untyped vs. simply-typed
Extensions (exceptions, recursion, ..)
Currying (higher order functions)
How Lambda Calculus is used in modern
 programming languages/type systems

Number Theory
Kinds of numbers (naturals, integers,
 reals, complex numbers)
Broadening the scope (e.g. algebra)
Specialist topics – e.g. Dedekind cut

https://www.youtube.com/watch?v=OmJ-4B-mS-Y
https://homotopytypetheory.org/book/

One Day Intensive Training Course For Senior Knowledge Professionals

Proof Theory
Natural Deduction, Props as Types, Sequent Calculus,

Ordinal Analysis, Automated Prover, Verification
There are a number of fascinating sub-fields in proof
theory and in this course we explore the best of them,
starting with structural proof theory (e.g. natural
deduction & sequent calculus), which has some very
powerful features. We are particular interested in the
junction of proof theory with programming. Many
believe the future of programming will be significantly
influenced by automated verification of correctness of
code - but what does that mean and how can it be
achieved? There are already open source projects
pointing the way to much more extensive use of formal
verification.

We are also curious as to what impact treating a proof
as a mathematical object has, and using mathematics
itself to explore a proof. Automated provers and proof
assistants are improving in quality all the time and we
see what the latest techniques offer. We also look at
other branches of proof theory, such as proof
complexity, ordinal analysis and provability logic.

Modern proof theory has huge potential to
revolutionize our approaches to the rigor with which we
judge statements made in mathematics and
programming.

Contents of One-Day Training Course

Target Audience
This course is aimed at
mathematicians and
modern developers who
need a better grasp of
proof theory

Prerequisites
Good foundational
mathematical education
along with some
programming experience.

Attendees can select
which programming
language they wish to use,
as all concepts will be
developed from first
principles.

Overview of Proof Theory
What is proof theory?
Many branches – structural proof theory,
 provability logic, proof mining,
 automated theorem proving, ...
Structural proof theory includes natural
 deduction/sequent calculus/hilbert
A proof as a mathematical object- can be
 manipulated and reasoned about like
 any other mathematical object

Formal Verification
Mathematically proving that code works in
 all circumstances will always be more
 desirable than unit testing it for known
 scenarios

Natural Deduction Intro
Judgment, evidence and witnesses
Depending on what kind of logic that
 interests us, differing judgments needed
Introduction rule
Elimination rule
Multiple premises and a single conclusion
Advanced Natural Deduction

Alternative representation styles
Assumptions / context / use of turnstile: ⊢
Real world ND usage: defining a language
 such as WebAssembly

Proposition As Types
Relationship to Lambda Calculus
Propositions as types
Proofs as programs
Normalization as evaluation of programs
Nirvana: code is (provable) logic is code

Sequent Calculus
A sequent consists of propositions to the
 left (ANDed), a turnstile and propositions
 to the right (OR)
Cut elimination
Importance for linear logic
Supports multiple premises AND multiple
 conclusions (unlike natural deduction)

Automated Proving
Proof assistants
Automated theorem provers

Proof Verification
Deciding if a proof is correct
Comparing proofs

Proof Complexity
Determining complexity critical for
 practical automation
Identifying the number of steps needed for
 a valid proof
As problems get larger, proof size explodes

Ordinal Analysis
Created by Gerhard Gentzen, ordinal
 analysis helps with consistency of proofs
An infinitary proof calculus
Upper bounds & lower bounds

Provability Logic
‘it is proved that ..’
Relationship to modal logic
The Gödel-Löb logic of provability

Project: Using Proof Theory
We conclude this course by exploring how
 proof theory can help us create a modern
 programming language

http://homepages.inf.ed.ac.uk/wadler/papers/propositions-as-types/propositions-as-types.pdf
https://dl.acm.org/ft_gateway.cfm?id=3062363&ftid=1881509&dwn=1&CFID=80189619&CFTOKEN=a97f4778c7aa4a5b-EC8785DB-CE5E-90B7-698EB419F456E7D4
http://adam.chlipala.net/

One Day Intensive Training Course For Senior Knowledge Professionals 7

Cubical Computational Type Theory
Theory of Truth, Types, Equality, Identity, Universes,

Univalence, HITs, Kan Filling, Cubical Type Theory
The related trinity of type theory, mathematical
logic/proof theory and category theory forms a modern
foundation for all of mathematics and computation.

A type is a precise mathematical specification of
behavior. An element of a type satisfies its specification.
Both a type and its elements are programs, subject to
evaluation. Elements evaluate down to values and types
evaluate down to canonical types [Martin-Löf] or type
values [Harper] (same idea). Application developers
experienced with mainstream programming languages
will already understand elements (objects) are subject

to evaluation, but will find types being so to be new and
significantly more expressive. Type theory supports the
idea of indexed families of types-the index being a
value (also known as dependent types). This will also
be a new idea to most developers. By introducing these
ideas and lots more, modern type theory goes far
beyond what we see as type systems for regular
programming languages. This course focuses on the
most promising of the latest type theories, known as
cubical type theory- a computation-friendly approach to
new ideas such as univalence & higher inductive types.
The Redtt project is an interesting implementation.

Contents of One-Day Training Course

Target Audience
This course is aimed at
modern developers who
are specifically interested
in modern type theory and
how it can be practically
used in computation

Prerequisites
Good foundational
mathematical education
along with some
programming experience,
as we include exploring
type theory from a
computational viewpoint.
Attendees can select which
programming language
they wish to use, as all
concepts will be developed
from first principles.

A New Foundation
Type theory
Category theory
Mathematical logic/proof theory
How they relate to each other (Shulman)
Constructivism

Type Theory Overview
Think of modern type theory as a highly
 expressive programming language useful
 for mathematics (+everything based on it)
A theory of truth – based on Martin-Löf’s
 ground-breaking paper: “Constructive
 mathematics and computer programming”

Basic Concepts
Type
Element
Evaluation
Judgment
Witness
Intuitionistic Type Theory

Simple Types
Defining a type
Defining an element
Look at bool and nat(ural number)

Common Types
Type
Function
Sum
Product
Top / Bottom

Dependent Types
The idea behind dependent types
Creating an indexed families of types

Additional Concepts
The meaning explanation
Functionality (in a type theory sense)
The hypothetical judgment
Recursion

Equality and Identity
Introduction to equality in type theory
Variations of equality type (exact, ..)
Identifications

Univalence
Initially considered in terms of Homotopy
 Type Theory (HoTT)
That uses an axiom – not desirable from a
computational viewpoint – why?
So other approaches explored ...

Cubical Type Theory - Intro
This is the cutting edge type theory
Simple intro
Uses points, lines, planes, cube, n-cube
The idea of paths
Transporting
Cubical Type Theory - Details

Kan filling, hcom, coe
Higher dimensionality
Cartesian variant
Higher Inductive Types (HITs)
HITs as generalization of inductive types
Uses in various forms of construction
Diagonals

Redtt Proof Assistant
Redtt is an open source implementation of
cubical type theory – let’s explore how it
works

https://github.com/RedPRL/redtt
https://gist.github.com/AndyShiue/cfc8c75f8b8655ca7ef2ffeb8cfb1faf/
http://archive-pml.github.io/martin-lof/pdfs/Constructive-mathematics-and-computer-programming-1982.pdf
http://archive-pml.github.io/martin-lof/pdfs/Constructive-mathematics-and-computer-programming-1982.pdf
https://github.com/michaelt/martin-lof
http://home.sandiego.edu/~shulman/papers/trinity.pdf
https://github.com/RedPRL/redtt
https://existentialtype.wordpress.com/2011/03/27/the-holy-trinity/
https://existentialtype.wordpress.com/2011/03/27/the-holy-trinity/

One Day Intensive Training Course For Senior Knowledge Professionals

Category Theory
Category, Category Object, Maps And Composition,

Functor, Natural Transformation, Adjoint
Category theory is a foundational area of mathematics
that examines in a uniform manner mathematical
structures and their mappings. In category theory, a
category is a mathematical universe. A category is
populated by category objects and there are mappings
(also called morphisms) between these objects.

A category is itself a mathematical object. There can be
mappings between categories, known as functors, and
even mappings between such functors, known as natural
transformations. Categories are abstract representations
of concepts from other areas of mathematics.

It is best to think of the goal of category theory is to
describe an abstract multiverse, containing one or more
universes, with mappings within each universe, and
between them. From this surprisingly simple core of
constructs, a rich description of much of modern
mathematics can accurately be built.

This course helps mathematicians and software
developers gain an appreciation of what is category
theory, both basic concepts and more advanced
capabilities, and to see see how it can be practically
applied in real-world situations.

Contents of One-Day Training Course

Target Audience
This course is aimed at
mathematicians and
software engineers
interested in learning about
category theory

Prerequisites
Good foundational
mathematical education
along with some
programming experience,
as we include exploring
category theory from a
computational viewpoint.
Attendees can select which
programming language
they wish to use, as all
concepts will be developed
from first principles.

Category Theory Overview
Why the interest?
What is a category?
Practical applications
Examining structure-preserving mappings
 between objects

Basic Ideas
Introduction to the basic constructs
A category object is a mathematical object
 (to begin with, think of it as a set of
 elements) - so is not the same as an
 object in typical OO programming
Think of a mapping (morphism) between
 category objects as a relation
Maps can be composed – so if we have
 map f and map h, we compose them as
 h o f (read as “h follows g”)
Such compositions form paths

Mathematical Definition
A category is defined as a collection of
 category objects, with maps (with
 domain and codomain) between them
Each object has an identity map
Two important laws:
* Identity Law governs identity map use
* Associative Law: (h o g) o f = h o (g o f)

Functors
Functors are mappings between categories
Structure-preserving
Endofunctors are mappings from a
 category object to itself -”endo” (as in
 “endoscope”) means look inside oneself
Left/right adjoint functors (as in adjoining)

Exploring Sample Categories
Set, Ring, Monoidal, Group,
 2-category, custom categories

Advanced Category Theory
Natural transformations
A deeper look at a variety of morphisms
Limits and colimits
Universal property
Initial and terminal object
Presheaf

∞-groupoid
“Sets in the next dimension are groupoids”
Groupoid builds on group in group theory
A groupoid is a category where each
 morphism is an isomorphism
∞-groupoid generalizes groupoids
k-morphisms and equivalences

Cartesian Closed Categories
Corresponds to lambda calculus
Mapping to and from the lambda calculus
“A CCC is a category that has an exponent
and a product, and is closed over both. The
product is an abstract version of cartesian
set product; the exponent is an abstraction
of the idea of a function, with an “eval”
arrow that does function evaluation.” [link]

Triumvirate
Role of category theory as one member of
 the triumvirate that includes type theory
 and mathematical logic
“Roughly speaking, a category may be
 thought of as a type theory shorn of its
 syntax” [link]

https://books.google.ie/books?id=ZF_QckMFy-oC&pg=PA647&lpg=PA647&dq=Roughly+speaking,+a+category+may+be+thought+of+as+a+type+theory+shorn+of+its+syntax&source=bl&ots=oa_JTN1Eac&sig=uJilXqoTHDQ8Dafk0eevdIZwNEk&hl=en&sa=X&ved=2ahUKEwjtv--5jZreAhUEV8AKHbMdDvEQ6AEwAHoECAoQAQ#v=onepage&q=Roughly%20speaking%2C%20a%20category%20may%20be%20thought%20of%20as%20a%20type%20theory%20shorn%20of%20its%20syntax&f=false
http://scienceblogs.com/goodmath/2006/08/10/from-lambda-calculus-to-cartes/
http://www.cse.chalmers.se/~coquand/lics18.pdf

One Day Intensive Training Course For Senior Knowledge Professionals 9

Mathematical Logic
Logic as Foundation, Propositional, First Order,
Higher Order, Models, Temporal, Modal, Kripke

Mathematical logic permeates all of mathematics and
programming.

Building on simple propositional logic, a host of richer
logics can be constructed to target different needs. For
example, First Order Logic is the deductive system used
by set theory and is also the basis for Description Logic.
Higher Order Logics have richer predicates though
come with added complexity.

We need to look at what we can represent in logic and
what valid claims we can make about such.

Logic can be qualified by time, by modality or other
techniques. More advanced logics are based on this
common foundation. It is useful to consider these logics
as a set of building blocks which can be rearranged to
suit specific needs. We are interested in building our
own logics. We also want to use mathematical logic in
real projects and explore how best to do this.

By the end of this course it will be clear that a good
understanding of mathematical logic underpins a good
understanding of all of mathematics and programming.

Contents of One-Day Training Course

Target Audience
This course is aimed at
mathematicians and
modern developers who
need a better grasp of how
mathematical logic can be
used in practice

Prerequisites
Good foundational
mathematical education
along with some
programming experience,
as we include exploring
logic from a computational
viewpoint. Attendees can
select which programming
language they wish to use,
as all concepts will be
developed from first
principles.

Logic Fundamentals
Defining and using a formal logic
Review of logic as branch of mathematics
Part of foundations
List of logics
Good understanding of logic helps with
 understanding everything above it

Propositional Logic
Conjunction
Disjunction
Negation
Conditional
Truth tables
Predicate (First Order) Logic

Builds on propositional logic
 means “for all”∀
 means “there exists”∃

Quantifiers
More advanced symbols
How first order logic is used in set theory

Higher Order Logic
Extra quantifiers
Predicates themselves having parameters
What variables range over (sets of sets)
Quantifying over sets
Additional semantics

Model Theory
Mathematical models
An interpretation gives meaning to
 symbols in a formal language
When is an interpretation a model?
Interpretation function
Domain

Structural Rules
* Weakening
* Contraction
* Exchange
* Associativity
Being selective - substructural

Modal Logic
Modality
Modal terms and their impact
In some way we wish to qualify or restrict
 a logic statement
Modal operators

Kripke Semantics
Usefulness
The Kripke model
Soundness of a modal logic
Kripe Frame

Temporal Logic
Logic that is in some way time-based
Now, future, past, until, while, always, …
Temporal operators
More fine-grained representation of things:
 how they are in the real world (beyond
 being simply always true)

Custom Logic
Why would we want to define our own
 logic?
Steps involved
How to create and use

Project
Practical use of a variety of mathematical
logic in a production setting
Considerations and observations

One Day Intensive Training Course For Senior Knowledge Professionals

Linear Logic, Adjoint Logic And Session Types
Cut Elimination, Substructural Rules, Linear Logic,
Adjoint Logic, Message Passing, Sessions, Scribble

[Sample: link hub] Data types have played a pivotal role
in software engineering for the last 50 years and many
believe session types will have an equally profound
effect for the next 50. Software platforms are getting
more complicated, larger, have more moving parts and
errors are more costly to remedy. It is clear that the
software engineering community needs more robust
tooling and modern mathematics can certainly help.

A number of potentially very useful mathematical logics
have already been defined, the most interesting from a
communications and concurrency perspective is linear

logic. Multiple logics can be combined using modal
operators based on adjoint logic. These can be used
where we need to mathematically represent and
accurately reason about processes/threads and their
concurrency and message passing constructs and use-
once or other richer semantics.

Due to its many practical usage scenarios, the
juxtaposition of mathematics, concurrency and
communication is a very active research area. We are
beginning to see these ideas have an impact on new
specialist tooling and extensions to existing frameworks.

Contents of One-Day Training Course

Target Audience
Mathematicians and
software engineers
interested in taking a
rigorous mathematical
approach to concurrency
and communication

Prerequisites
Good knowledge of the
fundamentals of
mathematical logic.

High Level Goals
Deadlock freedom during communication
Distributed garbage collector
Shared memory at scale
Mathematically sound concurrency

Preliminaries
Cut elimination
Sequent calculus
What is a sequent?
The idea of a process calculus
 (e.g. π-calculus)
Evolution of Propositions As Types

“propositions as session types,
 proofs as processes, and
 cut elimination as communication” [link]

Substructural Logic
Substructural logic – tweaking with the
 structural rules, what effect that brings?

Linear Logic
What does it describe?
Mathematically describe a process (a
 thread of activity) as a series of steps
Mathematical duals
In contrast to normal mathematical logic,
 which focuses on truth (constant), linear
 logic focuses on resources (e.g. use once)
Highly useful for writing deadlock-free
 code and communication specifications

Adjoint Logic: Intro
Fundamentals of adjoint logic
Practical uses
Review of modal operators
Adjoint pairs of modal operators

Adjoint Logic: Details
Relationship to weakening and contraction
Combining a variety of logics, such as
 LNL, linear, s4, lax, ...
Modes:
* linear,
* affine,
* strict,
* unrestricted

Message Passing
Interesting: message passing interpretation
Using adjoint logic to structure messaging

Session types
Practical uses of session types in modern
programming - intro type discipline to code
Managing multiple communicating and
 concurrent sessions
Binary and multi-party

Scribble
“Scribble is a language to describe
 application-level protocols among
 communicating systems. ” [link]
How Scribble works
Generating Finite State Machines (FSMs)
 on both sides

Usage
Some of these ideas are being to be used in
 real products and development tooling
Survey of what is available and how to use

Project
Expanding on practice topics explored
 earlier with a project looking at practical
 deployment of these ideas in production

http://www.scribble.org/
http://www.cs.cmu.edu/~fp/papers/places19.pdf
http://www.cs.cmu.edu/~fp/papers/adjoint18b.pdf
http://homepages.inf.ed.ac.uk/wadler/papers/propositions-as-sessions/propositions-as-sessions-jfp.pdf
https://en.wikipedia.org/wiki/%CE%A0-calculus
https://www.clipcode.net/assets/academy/live/clipcode-link-hub-for-linear-adjoint-logic-session-types.pdf

One Day Intensive Training Course For Senior Knowledge Professionals 11

Description Logic
Representation, Reasoning, Tableau Algorithm,

Subsumption, DL Extensions, Querying, Ontologies
Description Logic is the mathematics of the knowledge
graph.

Description Logic is the discipline of mathematics
concerned with knowledge representation and
reasoning. There are many ways to represent knowledge
as data but where Description Logic excels is doing this
in such a way that greatly facilitates reasoning.

DL builds on a number of areas of mathematics such as
the decidable fragment of First Order Logic and model
theory, and pays attention to complexity theory.

There are a variety of Description Logics (DLs), and we
compare and contrast a number of these. More
advanced DLs feature richer expressivity, but also come
with increased complexity in reasoning (especially for
large knowledge bases), so it is important to understand
the tradeoff.

A good understanding of Description Logic is essential
when working with graph stores, reasoners and semantic
query languages. DL provides the mathematical
formalism that underpins the semantic web, the W3C
OWL Language and the reasoners that process it.

Contents of One-Day Training Course

Target Audience
This course will be of
keen interest to
mathematicians and
software developers who
wish to understand
Description Logic - the
mathematical foundations
behind the Semantic Web
and W3C specifications
such as OWL, RDF and
SPARQL.

Prerequisites
Good foundational
mathematical education
along with some
programming experience,
as we include exploring
Description Logic from a
computational viewpoint.

Attendees can select
which programming
language they wish to use
in the labs, as all concepts
will be developed from
first principles.

Description Logic Overview
Relationship to first order logic
Description based on concept, role and
individual plus operators
TBox and ABox
Importance of inferencing
Constructing a mathematical model

DL Basics
Defining a simple DL
How to represent knowledge using it
What services could we layer on top of it?

Model Theory
An interpretation is a mapping for
 concepts, roles etc. and is a model if
 certain conditions hold
Relationship between DL & Model theory

Knowledge Services
Subsumption / Consistency
Inferencing
Satisfiability
Querying

Tableau Algorithm
More expressive DL needs richer reasoner
Outline of tableau algorithm
Variants
DeMorgan’s theorem
DL Extensions (extra letters)

Nominals
Cardinality restrictions
Inverses
Temporal
Extra role constructors
Concrete domains

Family of Logics
SHOIN (OWL DL)
SROIQ (full OWL2)
SHIF (OWL-Lite)
 … lots more

Resources
Tooling
Frameworks
Servers
Reasoners

Advanced Topics
Automata as a specialist alternative to the
 tableau algorithm
Study of complexity on relation to DLs
Scalability (very large knowledge bases)
Fixpoints

Use of DL in OWL
The W3C semantic web defines the Web
Ontology language (OWL) which is based
on description logic
The DL terms (individual, concept, role)
map to OWL terms (individual, class, prop)
Ontologies vs. SQL databases

There are similarities & differences
(TBox = schema, ABox = data)
Open vs. closed world assumption
Incomplete information
Role that reasoning plays
Unique name assumption

Query Answering
How it works (query processing)
Covers given and inferred knowledge
Re-writability

One Day Intensive Training Course For Senior Knowledge Professionals

Theory Of Computation
Automata: FSM, Inputs, Outputs, DFA, NFA,

Computability: Turing Machines, Complexity: BigO
An automaton (plural: automata) is a logical model of a
machine that, based on input events, transitions from
state to state. To describe an automaton we need to
identify its states, the set of acceptable inputs and the
expected outputs, and describe how transitions work.
There are a number of optional additional features to
constructing automata and these can add a range of
extra capabilities.

Automata theory is used throughout mathematics and
programming (e.g. compilers, protocols). It’s sometimes
so natural that users are often unaware of its presence.

Computability theory shows how an abstract machine
can be subjected to mathematical reasoning and certain
important characteristics can be reliably proven. We
explore the best known of these – a Turing Machine.
Complexity theory helps classify the degree of
difficulty (from trivial to impossible) there is in solving
a given computational problem.

A clear understanding of the theory of computation
helps everyone on a team have a richer appreciation of
how automata, computability theory and complexity
theory can be beneficial to a product’s architecture.

Contents of One-Day Training Course

Target Audience
This course is aimed
mathematicians and
software developers who
wish to become familiar
with important aspects of
how mathematics plays a
foundational role in
computation.

Prerequisites
Attendees need a good
understanding of
mathematics and software
programming.

Overview Of Automata Theory
Practical uses of automata
Overview of automata theory
Deterministic vs. non-deterministic
How different automata vary

Types of Automata
In increasing order of complexity:
* Finite state machine
* Pushdown automata
* Linear bounded automata
* Turing machine
What more complex automata brings

What is Needed to Build
States
Inputs – what drives transitions
Outputs – result of transitions
Transitions

States And Transitions
Identifying states
Optionally - identifying initial / final states
May be more than one
Transition function

Deterministic Automaton
A given sequence of inputs will result in a
 given set of state transitions
A set of states
A set of inputs
the next state function
the final predicate
Non-Deterministic Automaton
Impact of non-determinism
Transition relation
Converting a NFA to a DFA

Specialist Automata Topics
Acceptance conditions
Automata with an infinite number of states
Cooperation between multiple automata
Relationship to computational theory
Asynchronicity

Computability Theory
What is computability & recursion theory?
Model of computation - mathematically
 describing computation
Examining the properties of computation
Reverse mathematics

Deep Dive: Turing Machine
What is a Turing Machine?
How does it work?
What does its operation demonstrate?
Understanding this abstract machine brings
 many benefits

Intro to Complexity Theory
Computation with large numbers of steps
 and states can have performance issues
Specifically for these, need to consider
 variation of approaches and how to
 measure complexity
Advanced Complexity Theory

Trying to estimate amount of resources
 needed for particular compute workload
Exploring the limits of computation
Can a problem be solved at all?

Project
Use of theory of computation in a
 non-trivial project to show its benefits
 in a practical setting

One Day Intensive Training Course For Senior Knowledge Professionals 13

Abstract Algebra
Groups, Rings, Fields, Lattices, Modules, Algebras

Role of Algebraic Structures, Applications
With algebraic structures we try to model characteristics
of certain mathematical arrangements of elements and
operations upon them. We often find the same structures
appearing in different areas of mathematics and by
more deeply understanding properties of such structures
in the abstract we can share insight we discover in one
area across different application areas. We see the
varied algebraic structures can be used to represent
significant amounts of modern mathematics. For
example, what has been discovered about common
number arrangements (natural numbers, integers, real)
actually can be applied more widely.

The main families of algebraic structures that we
explore in this specialist course are groups, rings, fields,
lattices, modules and algebras. We say “families” since
these structures have multiple variations and depending
on what we are trying to describe and reason about, we
choose differing representations.

Some more specialist representations explore
combining different structures (such as Galois Theory,
which combines fields and groups). Sample applications
include the study of quaternions.

Contents of One-Day Training Course

Target Audience
Those interested in
algebraic structures and
their practical applications
in a number of areas.

Prerequisites
Attendees need a good
foundation in mathematics
with some previous
algebra experience.

Fundamentals of
Algebraic Structure

Overview of algebraic structures
Group, ring, field and more
Order and partial ordering
Sequence and maps
Usage scenarios for algebraic
 structures

Group
A (mathematical) group is a set with a
 binary operation and certain properties
 (related to identity, inverses and
 associativity)
Abelian group (adding commutativity)
Semi-groups

Monoid
A group with an identity element but
 (perhaps) without inverses
e.g. natural numbers (with 0) as a monoid
 under multiplication, under addition

Groupoid
A category where every map is invertible
Similar to group but with binary operation
 replaced by partial function
Groupoid compared to equivalent relation
Partial equivalent relation (PER)

Ring
A (mathematical) ring is a set with two
 binary operations (similar to addition
 and multiplication)
Representing a ring as a triple
Properties of rings
Ring theory

Field
A field is a set with operations for:
 addition, subtraction,
 multiplication and division
A commutative ring

Finite Fields (Galois Fields)
A finite number of elements
Impact on fields
Uses in areas such as cryptography

p-adic Fields
“For p any prime number, the p-adic
numbers .. are a field that completes the
field of rational numbers. As such they are
analogous to real numbers. ” [link]

Lattice
Adding the and operations and / ∧ ∨ ⊤ ⊥
As a kind of poset
Bounded lattices

Module
Module over a ring
As an abelian group
Representation of a group
Module over a monad

Algebra
Distinct terminology from algebra theory
Algebra over a field
Associative and non-associative algebras
Quaternions as an algebra

Practical Applications
Where might algebraic structures be
applied for practical benefits?
Exploring sample applications

https://ncatlab.org/nlab/show/p-adic+number
https://www.maths.tcd.ie/pub/ims/bull57/S5701.pdf

One Day Intensive Training Course For Senior Knowledge Professionals

Linear And Multilinear Algebra
Concepts, Vector Spaces, Matrices, Determinants,

Eigenvectors, Tensors, Applications
“Linear algebra is the study of linear sets of equations
and their transformation properties” [link]. We see
linear algebra having widespread practical uses in fields
such as AI, computer vision, 3D graphics and
animation, along with many areas of engineering,
science and the financial markets.

In this course we explore many aspects of modern linear
algebra, starting with fundamental ideas building up to
how they can be practically used. We begin with vector
spaces which provide an excellent representational
structure for what we need to investigate.

We cover matrices and their many characteristics in
depth, as they have been widely studied over the years
and many useful theorems have come to light. This
course also investigates multilinear algebra including
the use of tensors, which we see having growing
importance. Hence the use of the term “tensor” in
product names (e.g. Google’s TensorFlow, and TPUs;
and NVIDIA's Tensor Cores). What are tensors and
what are they considered so useful in various fields?
This course concludes by exploring in depth how linear
algebra can be implemented in programming
frameworks.

Contents of One-Day Training Course

Target Audience
This course is aimed
mathematicians and
software engineers who
wish to become familiar
with all aspects of linear
algebra.

Prerequisites
General understanding of
the fundamentals of
mathematics and some
programming experience.

Overview of Linear Algebra
Theoretical and practical applications of
 linear algebra
Role of linear algebra in AI, 3D, elsewhere
Number of ways of representing linear
 algebra – why we prefer vector spaces

Vector Spaces
A vector space over a field whose
 elements are scalar, with a set containing
 elements which are vectors
Vector addition
Vector multiplication
Vector spaces as a way of working with
 sequences, functions, polynominals
 and matrices
Linear transformation

Axioms for Vector Spaces
Axioms for vector spaces:
* associativity
* identity
* inverse
* distributivity, ..

Matrices
Representing and working with matrices
Matrix multiplication
Matrix inverse
Square matrix
Basis

Determinants
Determinant of a square matrix
Invertibility
Cramer’s rule
Determinant computations

Eigenvectors & Eigenvalues
Reasoning about transformations
Uses for stability analysis etc.
Matrix diagonalization
Left and right eigenvectors
“eigen” means “proper” in German
Calculations with eigenvectors
An eigenvalue as a scale factor of an
 eigenvector

Multilinear Algebra
Linear algebra constructions for tensor
products of vector spaces
p-vectors
Multivectors
Practical uses of multilinear algebra

Tensors
A linear mapping from one set (e.g. of
 scalars, vectors, tensors) of algebraic
 constructs to a different one
Role in TensorFlow
Tensor calculations lend themselves to
 hardware implementations for massively
 improved performance
Linear Algebra Programming

Dense and sparse matrices – and their
 differing charasteristics under
 different kinds of loads
Gaussian elimination
Applying linear algrebra to datasets

Project
Exploring the implementation of linear
algebra concepts in a programming
framework and its use in a practical project

https://www.nvidia.com/en-us/data-center/tensorcore/
https://cloud.google.com/tpu/docs/tpus
https://www.tensorflow.org/
http://mathworld.wolfram.com/LinearAlgebra.html

One Day Intensive Training Course For Senior Knowledge Professionals 15

Graph Theory
Representation, Storage Alternatives, Traversing,

Searching, Operations, Graph Drawing, Project
A graph is one of the most versatile structures in
mathematics with widespread research & practical uses.
We see use of graph concepts in areas ranging from the
knowledge graph, the social graph and in organization-
specific graphs (e.g. Microsoft Graph). Devs are used to
graph terms such as the “object graph” or the “call
graph”. Graph databases are becoming very popular.
Anywhere you see the work “network” in industry there
is a mathematical graph lurking underneath. Because of
its popularity, we even see use of the “graph” term
where it shouldn’t be – e.g. GraphQL (which is neither
graph-based, nor indeed, a query language).

This course covers all aspects of graph theory, from
simple representation, to traversal and search, to
transformations, to display. Starting with simple edges
and vertices (with storage as either a matrix or a linked
list [preferred for sparsely populated graphs]), we
investigate how to build, transform and present graphs.

We explore how to efficiently handle large graphs with
a keen interest in high performance. This course also
covers graph drawing (a surprising complex topic in its
own right). We conclude with a project to build a graph
engine.

Contents of One-Day Training Course

Target Audience
This course is aimed
mathematicians and
developers who wish to
become familiar with the
theoretical and practical
usage of graphs in a
variety of scenarios.

Prerequisites
Attendees need a good
foundation in mathematics
and programming, as this
course will be covering
graph-related ideas from
both disciplines.

 Attendees need to be
familiar with one
programming language.
Any will do, as in the
hands-on labs they will be
developing a graph library
in that language from first
principles.

Overview of Graph Theory
Part of discrete mathematics
No “top” or root
Overview of graph concepts
Vertices and edges

Introduction to Graphs
G = (V, E)
 where V is a node set and E is an edge set
Simple graph
Multi-graph
Common operations on graphs
Basic terminology
Directed (digraphs) vs. undirected graphs

Traversing A Graph
The visitor pattern
Ensuring each node is visited
Weighted graph (e.g. assign a “cost” to
 each edge, to influence selected path)

Searching A Graph
Breath-first search
Depth-first search
Dealing with cycles

Graph Operations
Graph composition: merge points to be
 based on identity of edges
Subsumption
Node selection
Edge contraction

Types of Graphs
Connected graph
Bipartite graph
Complete graph
Regular graph

Graph Properties
Shortest path
Minimum spanning trees
Traveling salesman

A Tree As A Kind Of Graph
Every tree is a graph, but not reverse
Binary search trees
Subtrees

Graph As Network Flow
Networks appear throughout engineering,
 science, business and daily life – how to
 best represent as graphs
Max flow / min cut theorem
Interacting with networks as graphs

Graph Data Structures
Adjacency matrix vs. adjacency list
How to optimize for large graphs
Indexing
Improving storage on hard disk

Graph Databases
Review of how graphs are handled by a
 graph database
Querying possibilities
Sample usage

Graph Drawing
How to automate placing graph constructs
 on a planar surface
The crossing number
How to improve automated layout

Project
Creating a custom graph engine to store
 and interact with large-scale graphs
 efficiently

One Day Intensive Training Course For Senior Knowledge Professionals

Technology / Code School

Modelset
● Domain Driven Design
● Semantic Models
● UML
● Design Patterns
● Advanced Data Structures

Assembly
● x86-64 Assembly
● ARM Assembly
● WebAssembly And WASI

IR
● .NET IL

Compiler
● C 23
● C++ 23
● C# 12
● TypeScript
● The Java 22 Language
● Python
● The Go Language
● OCaml Functional Programming

Proof Assistant
● Coq Proof Assistant

Shell
● PowerShell 7
● Bash

One Day Intensive Training Course For Senior Knowledge Professionals 17

Domain Driven Design
Ubiquitous Language, Entities, Aggregates, Events,
Services, Repositories, Contexts, Strategic Design

Every enterprise application has a domain – the actual
area where the application delivers business value to
real users. The database, user interface framework,
messaging infrastructure, etc. are just tangential to what
the application is really about. In the past, engineering
teams concentrated so much on SQL database tables
and GUI form layout that the handling of the domain
was swamped and lost in the mix.

In contrast, modern software engineering teams rightly
place much greater focus on the domain layer of the
project and incorporate domain driven design as a

central pillar of their project development strategy. Its
substantial benefits become very clear on larger projects
and on projects that evolve over many iterations. This
course explores all the patterns that underlie domain
driven design with the goal that at the end of it,
attendees will be fluent in DDD and can move from
being participants in, to contributors to future projects
that incorporate an important domain model. What’s
above (e.g. the UI) the domain model and what is below
(e.g. database, messaging) may well change frequently
over iterations, but the domain layer itself will have
longevity, so it is extremely important to get it right.

Contents of One-Day Training Course

Target Audience
Object-oriented
developers, architects and
product managers who
wish to build robust
domain models as the
central core of their
applications.

Prerequisites
Good all-round experience
of software engineering
and product development

Overview
What is domain driven design?
What is its role in the larger software
 development ecosystem

Layering
Interaction (or UI) layer
Application (or command) layer
Domain layer
Infrastructure layer
Think of the domain as the middle of a
 sandwich rather than a slice of a pyramid

Ubiquitous Language
“All singing from same hymn sheet”
Identifying a common terminology and set
 of meanings that all stakeholders can use
Language of the domain (so non-techies
 can easily understand it)

Entities and Value Objects
Important role of identity
What do we need to identify (and how)
How do we attach values to identities

Aggregates
Boundaries and associations between
 groupings of entities and value objects
Controlled access

Domain Events
State changes
What is happening inside the domain
 model and exposing this to outside

Factories & Services
Constructing and supplying entities
Segregating specific responsibilities
Integration with dependency injection

Repositories
Connecting to a database (e.g. ORM)
 with an aggregate access service
Creating and calling queries
Role of testing

Bounded Context
What is is inside and outside the scope of
 a domain model
Importance of boundaries & multiple
models (good fences make good neighbors)

Supple Design
Intention revealing interfaces
Side-effect free functions
Assertions
Conceptual contours
On-going model evolution

Strategic Design
Core domain
Segregated core
Abstract core
Dependencies – managing relationships
 between large project subsystems

Large-Scale Projects
Review of layering
Published language and internals
Extensibility
Flexible architecture for longer lifecycles
Handling large systems

Project
The combined use of many domain driven
 design ideas inside a larger project –
 including creating the domain model
 and its use from other layers

One Day Intensive Training Course For Senior Knowledge Professionals

Semantic Models
Domain / UI / Entity Data / Security / REST /

Learning / Extensibility / Admin / Deployment Model
 [Detailed Intro] Imagine a dev team has mastered core

technologies and building on that solid foundation, now
needs to design a next generation solution – how do
they go about it? If you team is in this situation, this
advanced course is what you need. Looking beyond the
technologies, this course examines how to develop
cutting-edge solutions that are of production quality,
commercially competitive and feature all the “-abilities”
your customers demand (scaleability, testability,
manageability, usability, reliability, ...). The central idea
is that software development revolves around a series of
semantic models (domain, entity data, user interaction,

security, admin, deployment, etc.) and these are
grounded in a “single truth” of the source code which
ensure all models work together.

For a new solution, we need to examine what is
required to design and build each of these models so
that the integrated end result delivers upon the
expectations. Modern developer technologies allow us
to be highly creative and more productive in how we go
about designing web solutions. However, using them all
together is somewhat of a challenge and this course
carefully explores how to proceed.

Contents of One-Day Training Course

Target Audience
Advanced software
architects and senior
software engineers who
wish to design cutting-
edge solutions using the
latest design ideas.

Prerequisites
It is essential that
attendees have a good all-
round experience of the
technologies they wish to
use.

Model Driven Development
Q: Assuming we know the very latest
technologies and APIs, how do we go
about designing next generation solutions?
A: Using a series of semantic models

Domain Model
Domain Driven Design
Handling complexity
Central role of the Domain Model
Evans' patterns for Domain Driven Design
– Ubiquitous Language, Entities,
ValueObjs, Intention-Revealing Interfaces,
Services, Repositories, Layered Arch, ...

Entity Data Model
How we bind objects and relational data
Creating data models & abstractions
Using entities in other parts of app

User Interaction Model
Thinking past the widgets and visual
layouts, we concentrate on what the user is
really trying to achieve
Task-focused design
Making available functionality as needed
Fluid interaction; paradigm selection

Security Model
Deciding what needs to be protected and
how; verifying security of solution
How to explain your solution's security
model to others (e.g. security auditors)

REST Model
Representational state transfer can be used
to selectively expose the Domain Model
and Entity Data Model to remote clients

Deployment Model
Get the bits deployed is important (on
average, 50% of support calls relate to this)
Treating deployment as first class feature

Administration Model
Different levels of users
Administrative features

Support Model
What happens when a user has a problem
How can software help with support
Instrumentation for support

Education Model
Often an afterthought, the education model
 is how users/admins learn to use the app
It is crucial to on-ramping of new users and
 the amount of (costly) support they need

Test Model
Unit tests, load tests, security tests, ...
Dependency injections and mocking
Managing the testing process

Intelligence Model
Extracting actionable results from various
 information stores and making it
 promptly/easily available

Extensibility Model
Exposing an API to enable third parties
 extend your solution – approaches

Reference Architecture
Exploring a reference architecture built on
 ideas covered in this course.

Project
Attendees will work in teams to develop
 slice of a suitable project (they choose)

https://www.clipcode.net/assets/academy/live/mdd.pdf

One Day Intensive Training Course For Senior Knowledge Professionals 19

Unified Modeling Language
UML Views of a Project, Diagramming Notation, Use

Cases, Classes, Relationships, Behaviors, States, OCL
UML is used by object-oriented designers to
unambiguously specify an OO design, to discuss it with
other designers and to communicate it to all
stakeholders - developers, end-users and management.

We can think of UML as a graphical design language
for object oriented software. It has become the graphical
lingua franca of object design, supported by most
design/development tools and understood by most
software professionals. To discuss modern software
among a team of stakeholders, we need to describe
objects – their internal static information, how they

relate to each other, how they behave dynamically (both
intra- and inter-object) and how they are delivered to
end-users. Software systems are becoming increasingly
complex and at the same time there is persistent
pressure to decrease development costs and time scales,
and improve quality.

UML is the key to succinctly describing correct
software architecture, and this in turn is the cornerstone
of successful projects. A very important point is such
design needs to be sufficient without being excessive.

Contents of One-Day Training Course

Target Audience
Experienced object-
oriented architects and
developers who need a
detailed understanding of
all aspects of UML.

Prerequisites
A good understanding of
object-oriented principles
and previous OO design &
programming experience.

UML Introduction
“The UML is a language for visualizing,
 specifying, constructing and
documenting
 the artifacts of a software-intensive
 system” (Booch et al)

UML Views
There are five ways of looking at systems:
User, Design, Process, Implementation
and Deployment views
UML diagramming notation
Class name, operation and attribute,
interface, component, package, note,
state, state transition, event, action, etc.

UML Diagram Types
Use cases, class, object (instance),
 sequence, collaboration, statechart,
 activity, component, deployment

Classes and Relationships
The structural (static) aspects of a project
Completely defining operations/attributes
Generalization

Advanced Classes and
Relationships

The four ways classes relate to others
Aggregation / composition

Interfaces/Components/
Deployment

Functionality as components
Collaborations

Dynamic Behavior
The dynamic aspects of a project
Interaction among a set of object instances
 (sequence and collaboration diagrams)

Finite state machine within an object
 (statechart diagrams)
General system activity (activity diagrams)

UML For Database Design
The Persistent tagged value
Storing objects in a relational database
Generating database schemas from UML

Object Constraint Language
OCL enables tighter specification by
adding detailed constraints to elements
within object models

Round-Trip Engineering
Converting between UML and languages
such as C++, Java, C#

UML and …
Multithreading
Networking
User Interface
Frameworks

UML and Agile Development
Requirements, Analysis,
Design, Implementation,
Test, Delivery
– all progressing in parallel

Design: sufficient, not excessive
How much/little design does an agile
 actually project need?
How to go about creating it?
UML as a form of sketching for devs

Complete Example
Walk through of creating a set of UML
diagrams for the lifecycle design of a
modern multithreaded HTTP web server

One Day Intensive Training Course For Senior Knowledge Professionals

Design Patterns
Pattern Template, GoF Patterns, Applying Patterns,

Advanced Patterns, Anti-Patterns, Pattern Extraction
[Detailed examples] Design patterns capture successful
design experience for later reuse by the original/other
designers. They capture solutions that have evolved
over time, in a concise and easily applied fashion.
Typically they are not the “first attempt” at solving a
problem – but rather the result of an iterative design
process by experienced designers (who have benefited
from hard-learned lessons of previous projects). Teams
are under tremendous pressure to produce higher quality
software at lower cost. One option is to ship the work to
cheap offshore development partners. A better option is
to use smaller, but much higher skilled teams - who will

compete by working more effectively to build the
software. Such advanced teams will be trained in design
patterns and hence can aggressively leverage them to
retain a productivity and quality advantage over lesser
skilled competition. As software projects increase in
scale, cost and complexity, and involve more inter- and
intra-company relationships, there is a need to adopt
techniques such as design patterns, to ensure use of best
practices in design issues. The goals of this course are
to look at a range of design patterns, to examine how to
apply them in your own projects and explore how to
create your own pattern catalog.

Contents of One-Day Training Course

Target Audience
This course targets senior
software engineers and
architects who need to
leverage design patterns
correctly in their own
projects.

Prerequisites
Attendees require good
OO knowledge and plenty
of development
experience.

Overview of Design Patterns
Simple and elegant solutions
Applying the concept of generics from
 programming to software architecture
Catalog of design patterns

Defining a Design Pattern
Documentation template
Important GoF fields (intent, motivation,
 applicability, structure, participants,
 collaborations, consequences)
Additional fields by others

GoF Creational Patterns
Abstract Factory, Builder, Factory
Method, Prototype, Singleton

GoF Structural Patterns
Adapter, Bridge, Composite, Decorator,
Façade, Flyweight, Proxy

GoF Behavioral Patterns
Chain Of Responsibility, Command,
Interpreter, Iterator, Mediator, Memento,
Observer, State, Strategy, Template
Method, Visitor

Applying Patterns
Applying patterns in your projects
Implementing patterns in code
Evolution of project over time

Design Patterns and …
eXtreme Programming
Aspect Oriented Programming (AOP)
Agile Development
Documentation

Server Platform Patterns
Patterns to satisfy competing demands

Pooling, tuning, managing, sharing,
distributing, extending, scheduling

Concurrency/Network Patterns
Wrapper, Component configurator,
Interceptor, Extension interface, Reactor,
Proactor, Async completion token,
Acceptor-connector, *-locking, Active
object, Monitor object,
Half-sync/halfasync, leader-follower

Enterprise Integration Patterns
Gregorgrams
Message exchange, channels, headers

Security Patterns
How to correctly design security features
 into your software systems
Secure channel, Session, Role,
Checkpoint,
Single access point, Full/limited views

Anti-Patterns
Anti-patterns “let you zero in on the
 development detonators, architectural
 tripwires and personality booby-traps that
 can spell doom for your project” (Brown)

Pattern Extraction
Finding patterns in your own projects
Effort involved in extraction
Optimizing and generalizing patterns

Custom Pattern Catalog
How development teams can build up a
 catalog of patterns for their own needs

Project Using Patterns
An advanced project whose architecture
 uses an assortment of design patterns

https://clipcode.net/assets/academy/mentoring/gof/index.html

One Day Intensive Training Course For Senior Knowledge Professionals 21

Advanced Data Structures
B-Tree, Splay, Priority Queue, Complexity, Searching,

Sorting, Hashing, Algorithms, Implementation
In this specialist course we examine modern data
structures from a mathematical viewpoint.

We explore how to correctly design modern data
structures, how to implement the algorithms that
interact with them, memory management, traversal,
item searching and sorting, merging and splitting, and
lots more. We use both imperative and functional
programming styles. We also cover the wide range of
proven data structure layouts already used in industry -
each with its own capabilities, challenges and
recommended usage domains.

We are particularly interested in where data structures
and mathematics meet. For example, this course
explores order theory and complexity theory and brings
the richness of certain mathematical structures to
common programming libraries (e.g. mathematical set
has extra useful features that are not present in common
implementations of sets in various runtimes). We also
pay attention to correct usage of terminology to avoid
misnaming – e.g. we see in C++ STL use of the term
“vector” for something that is not a mathematical vector
(an STL vector is a mathematical sequence [dynamic
array]) - it is now too late to correct that misnaming.

Contents of One-Day Training Course

Target Audience
This course is aimed
mathematicians and
developers who wish to
gain a richer understanding
of modern approaches to
data structures.

Prerequisites
Attendees need a good
background in
mathematics and
programming.

Goals of Data Structures
Designing data structure the right way
Important considerations (future evolution,
 performance, compression, ..)
Accessibility (random vs. sequential)
Visibility (public vs. internal functionality)
Complexity and Big O notation

Common Data Structures
Review of common data structures from a
 mathematical viewpoint
Mathematical sequence = array
Mathematical set = set
Mathematical morphism = map
 (sometimes called dictionary)
How best to implement

Additional Data Structures
Linked list (how to get same performance
 from singly vs. doubly linked list)
FIFO queue (stack)
LIFO queue
Does each data structure need to be
 independently created, or can it be
 layered on top of another (adaptors)?

B-Tree
B-Tree is the most important data structure
 for storage architectures
Performance characteristics of B-Trees
Variations of B-Tree layout

Splay Tree
Introduction to binary search tree
A splay tree is a binary search tree
Recently used items quick to re-access
The splaying operation

Priority Queue
Priority for an item
Sorting on that

Hashing
Hashing plays a particular importance in
many searching and sorting algorithms
Examine from first principles how efficient
hashing works

Common Operations
Searching
Sorting
Merging
Splitting
Parallel access

Data Structures For
Functional Programming

There are particular considerations to
 designing data structures for use with
 functional programming languages
Immutability and versioning

Algorithms
Structure independent algorithms
Applying algorithms in a uniform way
Use of iterators to traverse structures

Memory
For data structures that grow and contract
over time, need good memory management
Memory management and allocators
Slab allocators

Project
Creating a custom graph engine to store
 and interact with large-scale graphs
 efficiently

https://stackoverflow.com/a/758548

One Day Intensive Training Course For Senior Knowledge Professionals

ARM Assembly
Instruction Set, Dev Env, Memory, Registers,
Context Switch, Control Flow, SIMD, Project

ARM is a high-performance/low-power consumption
microprocessor architecture from ARM Holdings
(owned by Softbank). It powers almost all of the
world’s mobile devices (Apple, Samsung, Google),
many IoT devices and edge devices and is beginning to
see deployment elsewhere, such as the data center.

Learning ARM assembly is more straightforward than
its main x86 rival. ARM’s simple yet powerful RISC
instruction set has a more modern coherent overall
design, compared to the CISC x86 instruction set which
has evolved in a haphazard manner over decades.

It makes considerable sense for senior software
developers creating system code and application code
for ARM devices to know ARM assembly. Practical
benefits include gaining maximum performance,
debugging down to instruction set level, mitigating
security threats, etc. and in general just knowing what is
going on with code as it executes.

If you wish to rapidly get up to speed on ARM software
programming at the foundational level, then this course
is for you. It covers everything from setting up a dev
environment to the instruction set to app design.

Contents of One-Day Training Course

Target Audience
System software
developers seeking to get
the most out of their
applications running on
ARM-based devices.

Prerequisites
Good all-round low-level
programming experience.

Knowledge of a low-level
programming language
such as C, C++ or Go.

Previous knowledge of
assembly programming
useful but not essential.

Assembly Features
Issues in modern processor design
Assembly as a programming language
CPU Instruction Set Architecture (ISA)
Machine code, microcode & micro-ops

ARM CPU Architecture
High-level processor architecture family
The ARM CPU’s role as part of a modern
 computer system (bus, devices, I/O)
Memory addressing
ARM has a high register count
ARM mode vs. Thumb mode

The ARM Instruction Set
Tour of the ARM instruction set
Registers, cache, SIMD, float-point, etc.
Traps and interrupts

Tools
Assembler, disassembler, profiler,
 debugger, dumper, other
GNU toolset (e.g. binutils, gdb)
Actual ARM system vs. QEMU
Typical ARM developer workflow

Memory Management
Memory and the ARM CPU
Detailed examination of registers
Load and store (adr, ldr, stm)
DMA, main memory, stack pointer
Addressing

Strings, Integers, Floats
Representing numeric data types
Basic mathematical calculations
Strings and their operations
Storing, loading and manipulating

Conditionals
Flow control opcodes, condition codes
Labels, jumps, branches (e.g. blt, beq)

Functions
Calling functions (with parameters)
Creating functions (prologue, epilogue)

The OS and System Calls
How system calls are exposed to assembly
Calling the OS API / error handling

SIMD Programming
SIMD features / vectorizing designs
SIMD programming using C intrinsics and
 assembler instructions

Threading And ARM
Reviewing of multithreading concepts
Run to completion
Synchronization
Context switching

Security on ARM
How to mitigate exploits
Security-relevant instructions
Countering buffer overflow
Other Microprocessor Families
Contrast ARM with competitors
 (e.g. PowerPC, x86-64, RISC-V)
Interesting futuristic architectures

Project
To wrap up, the attendees will be asked to
complete a detailed project that brings
together what they have learned in the
course. The objectives will be to optimize
processing performance, data throughput
and developer productivity

https://www.arm.com/

One Day Intensive Training Course For Senior Knowledge Professionals 23

x86-64 Assembly
Architecture, Opcodes, Primitives, Functions, Flow

Control, OS Calls, C interop, Virt, SIMD, Project
“What Andy giveth, Bill taketh away”. As the processor
folks manage to speed up the computer, the software
folks invariably manage to slow it down with layer
upon layer of software inserted between the application
and the CPU. It is a major problem that many of today’s
application developers have little or no appreciation of
what is happening “under the hood” as their code
mysteriously interacts through all these opaque layers
with the CPU. The solution is for developers to learn
assembly for the CPU their applications use. This
intensive course provides a whirlwind tour of major
features of 64-bit x86 assembly.

There are three real benefits to learning x86-64
assembly. Firstly, you can program the performance-
critical sections of your app directly in it, and exploit
rich features such as SIMD. Secondly, you can optimize
code written in high-level languages (HLL). With more
knowledge, you can make more informed decisions
about structuring your HLL code. Thirdly, you can
debug complex problems at the instruction set level.
The x86 opcodes are what gets passed to the CPU to
execute. In tough debugging scenarios the more you
understand what is transpiring, the quicker you catch
bugs.

Contents of One-Day Training Course

Target Audience
This course target
experienced software
developers who wish to
learn about x86-64
assembly, so that they can
code in it directly and so
that they understand how
their high-level languages
actually execute, to help
with debugging and
optimization.

Prerequisites
Good experience of
software programming.

No previous assembly
programming experience
required.

Assembly Features
Common aspects of assembly
Assembly as a language
Opcodes
CPU Instruction Set Architecture (ISA)
Microprocessor Architecture

Machine code, microcode & micro-ops
The CPU’s role in a computer system
The bus, devices, I/O, addressing

The x86 Instruction Set
What makes up the instruction set?
Registers, cache, SIMD, float-point, etc.
Traps and interrupts
Application structure

Tools
Assembler, disassembler, profiler,
 debugger, dumper, other

Integers And Floats
Representing scalar and floating numbers
Basic mathematical calculations

Strings
String operations
Storing, loading and manipulating

Conditionals
Flow control opcodes
Labels, jumps, branches

Functions
Calling functions
Creating functions
Parameters

Executable Formats
ELF (Linux) and PE/COFF (Windows)
How assembly is placed inside executable

The OS and System Calls
How system calls are exposed to assembly
Calling the OS API
Error handling

C and Assembly
Passing data from one to the other
How C code is accessible from assembly
How assembly is accessible from C
Inline assembly

Optimization
Understanding the cost of each instruction
Reducing the number of instructions
Using more appropriate instructions

Stream Computing
Vector programming
Single instruction, multiple data (SIMD)
Opcodes for SIMD
Highly efficient for certain workloads

Virtualization
Hypervisor
Doing virtualization in software
Modern on-chip virtualization
Working with virtualization in assembly

Impact of 64-bit
Lengthening the registers
Address space changes
Other Microprocessor Families
Contrast x86-86 with competitors
 (e.g. PowerPC, ARM, RISC-V)
Interesting futuristic architectures

Project
Developing a high-performance custom
 solution in x86-64 assembly

One Day Intensive Training Course For Senior Knowledge Professionals

WebAssembly And WASI
Embedders, Modules, WABT, Primitives, Functions,
Linear Memory, Tables, Control Flow, JS API, WASI
All the major browser vendors - Google, Mozilla,
Microsoft and Apple - have cooperated to define an
agreed standard called WebAssembly that specifies how
an executable looks like for embedders to execute.
WebAssembly allows you to run code written directly
in assembly or in a high-level language (e.g. C/C++)
compiled into assembly in a browser without plug-ins.

WebAssembly is a virtual Instruction Set Architecture
that runs in an embedder. Currently the most popular
embedder is the modern standard web browser and on
the server the latest Node.js 22 supports it. Other more

specialist embedders include the OCaml based spec
interpreter and the C++ based WABT interpreter and
Fastly’s Lucet. WebAssembly modules are binary, low-
level (e.g. support 64-bit integers, unlike JavaScript),
and are very fast both to load and run. Support for
calling WebIDL- defined APIs (e.g. the DOM) will be
added in future. WASI provides a system interface.

Web developers with requirements for very high
performing applications will benefit from exploring
WebAssembly as it the basis for considerable industry
innovation and has wide cross-browser support.

Contents of One-Day Training Course

Target Audience
Developers wishing to get
the very best performance
out of their web browser
and web server code

Prerequisites
Knowledge of C/C++
/JavaScript/TypeScript
with some background
experience of working
with assembly

WebAssembly Overview
Part of the modern web platform
Designed for the web (security, etc.)
Tour of WebAssembly concepts

WebAssembly Modules
Binary files with .wasm suffix
Can be written by hand (assembly
programming) or compiled from C/C++
Overview of assembly syntax
S-Expressions

Embedder
Role of embedders
Embedding in web browsers
Embedding on server (e.g. Node.js 22)
Spec and WABT interpreters
Custom embedders in your applications

WABT – WebAssembly
Binary Toolkit

Low-level CLI tools to work with
 wasm modules
Assembler, disassembler, interpreter,
 linker, extractor etc.

Primitive Types
Just four!!
- i32 / i64 / f32 / f64
Working with primitives
Primitive operations

Functions
Defining and calling functions
Function parameters and return value
The call opcode
The start function
Importing/exporting functions

Linear Memory
Handling strings in linear memory
Memory imports and exports
Data section

Structured Control Flow
Hierarchical targets
Don’t jump to specific address, rather
 move up levels in hierarchy
block/loop/if/else/br_table opcode

Tables
Indirect function calls and security
Tables and the call_indirect opcode
Table imports and exports

JavaScript API
Think of a WebAssembly module as a
low-level representation that is passed to
web browser for internal/local compilation
Calling from JS to wasm / wasm to JS

Module Binary Format
Binary format with well-defined layout
Sections are either named or indexed
Extensible – can add custom sections
LEB128, opcodes, ..

WebAssembly Threads
How threads and webAssembly interact
Shared state via shared array buffer

Future Enhancements
Future enhancements coming in areas such
as SIMD, exceptions, garbage collection
and synchronization

WASI
The new WebAssembly System Interface
carefully defines a portable system API

https://hacks.mozilla.org/2019/03/standardizing-wasi-a-webassembly-system-interface/
https://www.infoq.com/news/2019/04/wasi-wasm-system-interface
https://github.com/fastly/lucet
https://github.com/WebAssembly/wabt
https://github.com/WebAssembly/spec/tree/master/interpreter
https://github.com/WebAssembly/spec/tree/master/interpreter

One Day Intensive Training Course For Senior Knowledge Professionals 25

.NET Intermediate Language (IL)
Stack Engine, IL Fundamentals, Metadata, IL Syntax,

Opcode Injection, Building Compilers, Reflection
Intermediate Language (IL) is .NET’s low-level
platform-independent representation of an executable.
Many .NET developers are content to write high-level
code in an IDE and then compile/run it, oblivious to IL.
More advanced developers and those with specialist
needs are more ambitious – they wish to program
directly in IL, to browse and edit the IL generated for
them by high-level language compilers, to auto-generate
source code from other logical representations, to create
compilers, and to really know “under the hood” how
code runs when using high level languages (to help
optimize performance, aid more precise debugging,etc.)

This course covers all aspects of IL, including the
opcodes, metadata, assembly syntax, compilation/de-
compilation tools, binary file format and .NET’s
reflection (which provides classes to browse existing
assemblies and to emit assemblies directly). We also
examine usage scenarios, such as building your own
compiler and code generation tools.

Attending this course will allow you get a jumpstart on
understanding all aspects of .NET IL, to produce a
variety of code manipulation functionality and gain a
much better appreciation of how .NET code executes.

Contents of One-Day Training Course

Target Audience
This course will interest
advanced .NET developers
who wish to code directly
in IL, or who need a richer
understanding of how their
higher-level code executes,
or who need to create code
generators and specialist
developer tools.

Prerequisites
In-depth knowledge of
C# 12 and all round
experience using the
.NET CLR

Experience of language
design, compiler creation
and low-level code
manipulation useful

Review of CLR Issues
Assemblies & modules, how code
 executes, security issues, type loader
CLR architecture from IL viewpoint
Stack-based execution engine

IL Fundamentals
Overall IL Model
Verbose/compact IL
JIT compiler
Hello world in IL

IL Tools
Ilasm.exe, Ildasm.exe
Ngen.exe, PEVerify.exe
Introduction to Structure of IL
PE/COFF headers and sections
Metadata tables
Manifest
Managed code representations

Metadata Fundamentals
Set of tables with very detailed data about
 contained code; Table types and uses

Advanced Metadata
Important tables (ModuleDef, TypeDef,
MethodDef, FieldDef, AssemblyRef,
ModuleRef, ClassLayout, NestedClass

Types, Fields and Methods
The IL instruction set
Use of IL language constructs
How code from high-level .NET
 languages appears in IL

Advanced Types
Signatures, visibility, inheritance, ctors
Primitive/native/managed types

Other IL Features
Unmanaged code
Exception handling/events/delegates

Programming with IL
Writing more complex programs in IL
Coding issues to be aware of
Object interactions in IL

Profiler API
The unmanaged Profiler API allows you to
 add custom code that will be called when
 the CLR is about to JIT IL code
You can change the IL on-the-fly

Code Interactions
Coverage of why and how one might wish
 to programmatically interact with code
Overview of required code services

Reflection
System.Reflection namespace
Dynamically loading & invoking types
Browsing contents of assemblies

Emitting
System.Reflection.Emit.*-Builder classes
Emitting persistent & transient assemblies

.NET Native and IL
.NET Native – concepts and toolchain
Converting from IL to native code

Building Custom IL Tools
Coverage of why and how to
 programmatically interact with IL code
Overview of required code services

Project
How to integrate IL modules in your own
custom project

One Day Intensive Training Course For Senior Knowledge Professionals

Coq Proof Assistant
Overview, Setup, Inductive Types, Standard Lib,

Tactics, Automation, Extraction, Project
Among future-thinking software engineers worldwide
there is considerable interest in creating verified
software based on rigorous mathematical specifications.
Among modern mathematicians having to deal with
increasingly complex constructive mathematics, the idea
of using computers for verified proofs is gaining
traction. Recent proof assistants (e.g. Coq) provide the
necessary tooling for both, as they are variations on the
same theme (propositions as types/proofs as programs).

Initially created by France’s leading research institute,
Inria, Coq is now the world’s leading in-production

proof assistant with a thriving open-source project with
a vibrant ecosystem and excellent documentation
(e.g. Pierce et al. and Chlipala).

Coq is based on the Calculus of Inductive Constructions
and has attracted many innovative ideas as to how best
represent proofs and their “execution” by computer.

The idea of proof assistants will play a central role in
mathematics and software development in the 2020s.
This intensive course brings mathematicians and
developers up to speed on what they need to know.

Contents of One-Day Training Course

Target Audience
Future-focused
mathematicians and
software developers who
wish to explore
mathematical proofs and
verified programming as if
they are the same

Prerequisites
Knowledge of functional
programming in any
functional language (as
Coq can be considered an
advanced form of a
functional language).

Coq Overview
What is a proof assistant and what does
 it actually do?
How does a proof assistant work?
Intro to Coq and other proof assistants
Tour of Coq features

Coq Dev Setup
Tooling needed to work with Coq
CoqIDE
coqdoc
make system
Documentation resources

Intro to Coq Programming
The Gallina specification language
Simple types (enumerations, booleans,
 natural numbers, ..)
General layout of a Coq program
Control flow
Functions
Require Import command

Induction
Creating a simple inductive type
Using enumerations
Pattern matching
Proving properties

Logic
Easy to represent mathematical logic in
 Coq – implication, conjunction,
 disjunction, negation

Working with Combinations
Lists, sets and maps
Finite variations of these
Relations

Tactics
“The tactics implement backward
reasoning. When applied to a goal, a tactic
replaces this goal with the subgoals it
generates. We say that a tactic reduces a
goal to its subgoal(s).” [link]

Automation
auto tactic for proof search – tries to solve
 the current goal
The Ltac tactic language
eapply – apply with existential variables
eauto – a general auto tactic

Coq Standard Library
Coq has a comprehensive standard library
with functionality related to logic, algebraic
structures, bools, number types, relations,
sets, strings, Unicode and lots more

Extraction
To execute code, do not need entire Coq
 specification, use simpler representation
Hence extraction is the process of creating
 code in a functional language to run

The Extraction command
Multiple target languages (OCaml, Haskell)

Internals
Coq source written in OCaml
How does Coq work under the hood
Exploring how extraction works in detail

Project
This course concludes with a two-part
 project requiring:
* using Coq to provide mathematics proofs
* using Coq to write functional software

https://coq.inria.fr/distrib/current/stdlib/
https://coq.inria.fr/distrib/current/refman/proof-engine/tactics.html
http://adam.chlipala.net/cpdt/
https://softwarefoundations.cis.upenn.edu/
https://coq.inria.fr/
https://github.com/coq/coq
https://www.inria.fr/en/
http://homepages.inf.ed.ac.uk/wadler/papers/propositions-as-types/propositions-as-types.pdf
https://deepspec.org/main
https://deepspec.org/main

One Day Intensive Training Course For Senior Knowledge Professionals 27

Fundamentals Of Object Programming
Modern OOD, Design By Contract, Reusability, AOP,
MDA, Design Patterns, Software Failure, Generics

Object oriented techniques has now been applied to a
large number of projects with a varying degree of
success. With a better understanding of where the real
benefits lie, object technology is being continuously
refined and improved accordingly. This training course
brings software developers - who already have a
working knowledge of the basics of OO - up to speed
with modern object-oriented design and the evolving
OO programming techniques and enables them to
discover how to use objects successfully. It answers the
question: “What is happening in the OO world, beyond
the fundamentals such as inheritance, encapsulation

and polymorphism?” The goal of any OO project is to
produce the best software for as few resources (time
/money/devs) as possible. The software should evolve
well in the future and adapt to changing needs. Parts of
the software should be reusable on other projects. It
should behave robustly when it encounters errors.

You will benefit from attending this course by gaining a
clear understanding of the very latest object technology
concepts, understanding its vocabulary and identifying
how it fits into the broader picture of s/w engineering
when describing how to approach software tasks.

Contents of One-Day Training Course

Target Audience
Software engineers
wishing to learn about the
latest advances in object-
oriented concepts

Prerequisites
Some previous OO
software development and
general application design
experience.

Object Modeling
Why do we need to model?
What benefits does it produce?
Object technology involves a series of
simple concepts – why is it so difficult to
really get right?

Design By Contract
Design By Contract concepts
Preconditions/postconditions/invariants

Object Discovery
How do I find the appropriate objects
Object discovery techniques
Is this one object, two objects, or none?

Modern OOD
Getting the class and instance structure
right. The importance of typing and ADT.
Meyer’s Software Construction Principles:
Linguistic Modular Units
Self-documentation
Uniform Access
Open-Closed
Single Choice

Reusability
How to reuse objects
Design for reuse
Managing reuse
Aspect Oriented Programming
What are aspects
Reuse through the callstack
Setting up the call environment with AOP

MDA
Concept of Model Driven Architecture
How to apply MDA

Design Patterns
The essence of a good project is not in its
codebase but in its design
A good design is far more reusable than a
good piece of source code
Design patterns are a technique of
capturing design experience for later
reuse by the original and other designers

Software Failure
Identifying failure points
Catching, reporting and reacting to failure
Importance of handling failure within OO

Generics
Type-independent programming
Generics in various languages

Agile Modeling
Problems with “heavy-weight” processes
AM is a family of light-weight processes,
suitable for demands of fluid projects
Modeling the AM way

eXtreme Programming (XP)
XP Principles: pair programming, integrate
& test every day, continuous feedback,
get to running code ASAP, evolutionary
design, managing communication

Latest OO Ideas
Orderly vs. Experimental Engineering
AntiPatterns
Internet time
Designing for continuous change

Case Study
Detailed case study showing how to apply
advanced OO concepts to a project

One Day Intensive Training Course For Senior Knowledge Professionals

C 23
Data Types, Functions, Conditionals, Pointers,

Functions, I/O, Structures, Pre-processor, DLLs
C is available on virtually every form of computing
hardware and for every OS. C libraries are callable from
almost every high-level programming language (this is
needed because the API to most OSes is in C).
Applications seeking close-to-the-metal performance
need to be written in C. Most kernel and device driver
development is in C. The syntax of custom languages
for GPUs (shader languages) and FPGAs are C-like.

Hence every developer should know C and know it
well. What you learn on this intensive training course
will be applicable on all these target platforms.

In this course all the main C programming concepts are
covered. This includes flow control constructs, pointers,
functions, the pre-processor and typedefs along with the
importance of data-types, type safety and custom
structures. Compiling, linking and debugging multi-file
applications are covered with demo code that evolves
from simple ten-line utilities to large-scale projects
involving multiple developers (e.g. libraries & header
files). As well as covering the syntax of the C language,
we also cover how to use the important C standard
library (e.g. I/O) and explain how to use C effectively in
app development.

Contents of One-Day Training Course

Target Audience
This training course is
aimed at software
engineers who need to
quickly get up to speed
developing in C.

Prerequisites
Attendees must have a
programming background
but no experience of C
required.

Overview of C
C evolution – K&R, ANSI, C99, C11, C18
Whirlwind tour of features of C
Hardware issues (e.g. volatile)

A Simple Program
Freeform language
Data types and variables
Constants, functions, comments, layout

Variables and Data Types
Simple data types, naming and size
Strings - char and wchar
Security and buffer overflow issues
Enumerators
User defined structures and unions
Static and global variables
Visibility of global variables

Intro to C Functions
Splitting features into functions
Small and self-contained chunks of code
A multi-function C program

Operators
Arithmetic & relational operators
‘=’ and ‘= =’
Increment and decrement operators
Bitwise operators

Flow of control
if / if else / for loop
switch/case
while
break and continue

Non-Local Jumps
Practical uses of non-local jumps
setjmp and longjmp

Functions in Detail
Function prototypes
Variable arguments lists
Functions in separate files (.c and .h files)

Pointers and Arrays
Handling arrays and array arithmetic
Pointers to standard data & custom structs
Function pointers (defining/setting/calling)
void vs. void *, use of restricted modifier

Pre-processor
#include, #define, #ifdef and #endif
Concatenation/stringizing/varidic macros

Dynamic Memory
malloc, free, realloc; costs of memory ops
Examples of dynamic memory usage

C Standard Library
Standard I/O, file I/O
Assert, math, conversions, time
Compiling, Linking, Debugging
Role of modules and compilation units
Constructing apps and libraries from code
in multiple files
Building, linking and debugging

C11 [major]/C18 [minor]
Tour of new features of latest standard
Anonymous structs
New C threads and stdatomics header files

Project
Object-based C - let’s build OO in C with
inheritance (tree of anonymous structs),
encapsulation (redefining structs),
exceptions (using setjmp/longjmp),
namespaces, RTTI, generics, etc.

One Day Intensive Training Course For Senior Knowledge Professionals 29

C++ 23
Classes, Inheritance, Visibility, Templates, RTTI,
Exceptions, Namespaces, Class Hierarchy Design

This course provides developers with an intensive
introduction to programming in C++, together with an
overview of its powerful standard library. C++ is a
general purpose programming language, highly suited
for objected oriented and generic application,
component and systems development. It is used for
advanced, complex, full functionality projects. It is fast
– and often selected where high performance coupled
with a rich object-oriented language is needed.

Above and beyond the new syntax aspects of C++, this
course also examines how to profit from a range of new

object programming techniques that are evolving, such
as genericity and refactoring. Also explored is the
optimum architecture for modern C++ class hierarchies,
the latest C++ standards (C++14, C++17, C++ 23) and
interaction with C code. We specifically explore the
interesting new C++ 23 features.

A core competency of all software engineers is to be
having completely mastery of the programming
language they use. If you are currently a programmer
moving to a new C++ project, then you will greatly
benefit from attending this course.

Contents of One-Day Training Course

Target Audience
This training course is
aimed at people who need
to quickly get up to speed
developing in C++.

Prerequisites
Attendees should be
experienced software
developers with a good
knowledge of any high-
level programming
language.

No previous experience of
C++ programming
required, as this course
covers the language from
the fundamentals up.

Tour of C++ Features
Primitives
Flow control
Enumerations
Preprocessor
Compilation

Classes
Class members and this ptr
Visibility – public, protected, private
Constructors and destructors
static

Inheritance
Superclass and sub-classes
Constructors and the inheritance hierarchy
Impact of the virtual keyword

Multiple Inheritance
Benefits and problems
Which function is executed
The diamond and vtbl issues

Templates
Function templates
Class templates
Function specialization
How to write code once and then use it
 with a variety of data types
Debugging template code
Designing with genericity in mind

Lambda Expressions
What problem are these trying to solve
Unnamed functions
Expression syntax
Writing code that accepts lambda
 expressions

Exceptions
Benefits, costs and recommendations
 associated with C++ exception handling
Families of exceptions
Throw-try-catch syntax
Declaring exceptions in header files

Namespaces
Avoiding naming conflicts
The std and other namespaces
Creating & using your own namespace

RTTI
Run Time Type Information
Exploring objects + their types at runtime

Refactoring
Software grows and changes
Sub-optimal solutions evolve
Refactoring is a set of coding best
practices which aim to fix & improve

C Code Interaction
How C++ code can call C code
How C code can call C++ code
extern C
Design of C++ Class Libraries

Classes are seldom needed on their own
How groups of classes can cooperate
Designing hierarchies
Optimally placing data and functionality
Advanced Language Features

Temporaries/ Header file changes
New keywords: mutable, typename, etc.
Smart pointers:rationale & how to use
Potential problems to avoid
C++20: What’s coming soon

https://isocpp.org/files/img/wg21-timeline-2019-04.png
https://www.linkedin.com/pulse/c20-big-four-rainer-grimm/

One Day Intensive Training Course For Senior Knowledge Professionals

The Java 22 Language
OO, Classes, Inheritance, Interfaces, Generics,
Annotations, Exceptions, Events, Modules, JNI

With a much improved standards update cadence there
is re-invigorated interest in advancing the Java language
and ecosystem, by Oracle and external teams using and
contributing to Java’s evolution.

The Java 22 Language is a powerful object-oriented
language with modern features such as the Java
Platform Module System, lambdas, generics and
annotations and a comprehensive set of OO features
such as classes, inheritance, interfaces and exceptions.

Some of the largest enterprise projects in the world are
written in Java. These are multi-year projects that are
vital corporate assets and need to continuously evolve
well into the future. Java is an important language for
many university courses. Many high throughput cloud
platforms are written in Java. The main language for
Android is Java. Plenty of cutting-edge open source
projects are written in Java. In addition to existing
projects, Java is also being regularly selacted as the
main language for all kinds of new projects. Hence now
is an ideal time to learn Java well – starting with the
language itself.

Contents of One-Day Training Course

Target Audience
Software developers
wishing to become Java
developers, starting with
learning the language
itself.

This is an ideal first course
in Java.

Prerequisites
Programming experience
with an OO language such
as C++, TypeScript or C#,
along with good exposure
to object-oriented design.

No previous experience of
Java is needed, as this
course covers the language
from the fundamentals up.

Java - Language & Ecosystem
Review of the ecosystem surrounding the
 Java language and how it is evolving
Features - language, VM, bytecode,
 runtime services, framework, tooling
What’s new in Java 22

A Java Project Walkthrough
Simple hello world project
Main and command line args
Primitive data types
Code layout & basic syntax
Classpath / JAR files

Classes And Constructors
Simple class definitions
Static vs. instance members
Access modifiers
Variety of constructor layouts
Nested classes

Inheritance
Inheritance trees
Extending classes
Overriding / hiding

Generics
Generic functions
Different invocations
Generic types (type variables)
Shadowing
Constraints

Annotations
We often wish to attach additional data to
 a class -without impacting the inheritance
 hierarchy
Java annotations allow use of metadata

Interfaces & Mixins
Defining behaviors via interfaces
Implementing multiple interfaces
Uses for interfaces
Default methods
How to provision mixins using interfaces

Exceptions
Basic exception handling
Creating an exception
Throwing and re-throwing
Catching an exception

Event Handling
java.lang.EventObject
Observer and Observable
Creating event listeners

Lambdas
Lambda expressions
Quick and easy way to define a method
Arguments and body
Designing code using lambdas
Java Platform Module System

A named set of packages
Module keyword
Organizing modules

JNI - Calling C Code
JNI – Java Native Interface
Calling out to C code from Java
Passing parameters and accepting returning
 results between different languages

Java Project
Developing a Java project using a selection
 of language features showing how they
can sensibly be used together

One Day Intensive Training Course For Senior Knowledge Professionals 31

C# 12
C# Fundamentals, .NET Fx Intro, Types, Classes,

Attributes, Properties (init-only), Generics, Streams
C# 12 is the premier development language for
the .NET platform. C# was designed from scratch
with .NET in mind. Most of the internals of .NET 8 and
Visual Studio are written in it. It has been selected by
the majority of application teams creating
commercial .NET 8 projects. C# builds on the rich
common heritage of languages such as C++ and Java -
but avoids their pitfalls and adds certain interesting new
concepts, such as LINQ. There are aspects of C# that
developers already know, there are some they have
experienced similar but slightly different syntax in other
languages, and some that are innovative.

C# can be used to develop stand-alone apps, local and
distributed components, web services and mobile code.
It produces code that can target desktop PCs, mobile
devices, servers and IoT devices. C# 12 can be used for
DB [EF 6], UWP, ASP.NET, WebAssembly (Blazor) &
security projects. Hence it is an excellent all-round
development language for all .NET applications. This
intensive course aims to take experienced software
engineers rapidly through all the major aspects of C# 12
- using plenty of demo source code and hands-on labs to
show it in action. This is an ideal first course for those
moving to the C# 12 language and .NET 8.

Contents of One-Day Training Course

Target Audience
Experienced software
engineers wishing to
rapidly get up to speed
with C#.

Prerequisites
Programming experience
with an OO language such
as C++, TypeScript or
Java, along with good
exposure to object-oriented
design.

No previous experience of
C# or .NET is needed. This
is an ideal first course for
those wishing to start in
the modern .NET
ecosystem.

This course covers C# 12
using Visual Studio.

C# 12 and .NET 8
What is .NET?
The Base Class Library
The CLR
How C# is used with .NET
Delivery of C# functionality in assemblies

A C# Project Walk through
Solutions, projects and files
Parts of a C# project
Structure of code
Setting up a solution with a C# app and
class library

Base Types
Built-in data types
.NET value types and reference types
How C# and .NET data types compare
Building code in C# that is callable from
 other languages

Language Fundamentals
Main starting point
Flow control, operators
Variables, methods
Enumerators, bit flags, arrays, indexers
Namespaces

Class Fundamentals
Members, constructors, visibility, ref and
out, constant fields, structs
Fields & properties, methods, nested types

Inheritance
Single inheritance only (for classes)
Virtual functions / override / new
with-expressions [C# 12]
Designing libraries using inheritance

Delegates And Events
Equivalent of function pointers
Defining and exposing delegates
Registering an interest in a delegate
Async info with events
Design pattern for event handling

Interfaces
When to use interfaces
Multiple inheritance & hierarchies
Abstract classes vs. interfaces

Exception Handling
Try .. catch … finally
Detecting and responding to exceptions
Strategies for exception handling

Generics & Constraints
Generics (for methods and classes)
Constraints / Partial types
Anonymous methods Type inferencing

Expression Bodied Members
Succinct member definitions
Methods, constructors, properties, indexers

Specialist Features
Null conditional operator
Auto-property initializer / nameof

Calling C Code
Calling out to C code from C#
Passing parameters / accepting return val

Records
A record is structured immutable data
New data keyword

C# 12 - What’s new
Review of the latest additions to the C#
 language and what benefits they deliver

One Day Intensive Training Course For Senior Knowledge Professionals

TypeScript 5
Object Foundations, Classes, Mixins, Generics,
Specialist Types, Iterators, Ambients, Lib.d.ts

For modern larger-scale applications that target the
JavaScript VM, either in browsers (e.g. Angular 18) or
on the server and command-line tools (Node), or mobile
apps (Ionic) or desktop apps (Electron), many senior
developers have a desire for a more robust and
comprehensive programming language compared to
JavaScript; and TypeScript is the answer.

TypeScript is a JavaScript-like language that transpiles
to JavaScript so can run anywhere JavaScript runs. In
addition to everything the JavaScript language offers,
TypeScript also offers a much richer type system,

generics, decorators, interfaces, mixins, additional tools,
ambient type declarations and lots more. This is
convincing more and more project teams to adopt it as
their core programming language. We see it use
internally with Angular, Zone.js, RxJS, NgRx and many
commercial applications (including very large ones).

The aim of this course is to quickly bring you up to
speed with programming in TypeScript. We explore the
language syntax, its access to libraries, how to build
applications and see why it is more and more being
selected instead of JavaScript by senior web developers.

Contents of One-Day Training Course

Target Audience
Developers wishing to
create modern apps using
TypeScript

Prerequisites
Software developers with
an object-oriented
background and some
browser programming
experience.

TypeScript Introduction
Relationship to ECMAScript standards
Language tour
What we should be familiar with and
what
 may be new to us (any, never, tuple)
tsconfig.json and transpiling

Object Foundations
Type system hierarchy
Type inferencing
Visibility and immutability

Object Types
Duck typing
Type system
ObjectType definition
Properties and accessors
Call signatures
Tuples
Classes, Interfaces & Mixins

Defining a class
Constructors
Inheritance
Specifying an interface
What happens to interfaces after
 transpilation (they disappear!)
Partial or full implementation of interface
Additional construct which can be very
 useful in certain circumstances

Generics and Constraints
Type-independent code
Separating algorithm from types
Constraining permissible type parameters
Relationship to transpiled code

Namespace & Modules
Modules as a unit of delivery and unit of
 code management
Importing and exporting
Sub-dividing module types in namespaces
Use in conjunction with module naming

Iterators & Generators
Symbol.iterator and for..of
Generator function

Specialist Types
Intersection type
Union type
Nullable
Alias
Reflection/Decorators/Metadata

Attaching metadata to a class
Using decorators
The reflect-metadata package

Ambient Declarations
Interacting with non-TypeScript libraries
 and use of @types with npm
Writing and publishing .d.ts files
Ambient syntax

lib.d.ts Standard Library
A modular collection of ambient
declarations for various targets

New for TypeScript 5
Exploring the new features of TypeScript 5
– including variadic tuple types, labelled
tuple elements, class property inf and more

Project
Using TypeScript in a project
 to build a modern flexible framework

https://github.com/angular/

One Day Intensive Training Course For Senior Knowledge Professionals 33

The Go Language
Goals, Workspaces, Go Type System, CGo,

Packaging, Concurrency, Remote Repositories
The Go Language (GoLang) is a next-generation
system programming language that is rapidly growing
in popularity. Many wildly successful commercial and
open-source projects such as Docker and Kubernetes
are written in Go. It is appreciated for a range of
innovations, such as built-in concurrency including its
channel architecture, simplified tooling, sensible
conventions, and lots more. This course is aimed at
experienced developers and brings them quickly up to
speed programming Go and being able to understand
and enhance existing Go source trees and being able to
build their own.

We cover creating Go commands and libraries, package
management, interaction with repositories, structural
typing. We look at Go’s rich range of system packages.
We see how lack of classes and inheritance is not a
problem. We explore the use of Go in a range of popular
projects and see what real-world benefits it brings to
system-level programming.

Go is the language of choice for modern low-level
work and it is increasingly being selected by cutting-
edge system developers for their most challenging
projects. This course helps each attendee become one.

Contents of One-Day Training Course

Target Audience
Developers wishing to
create modern system-
level applications using the
Go language.

Prerequisites
Software developers with
an object-oriented and
system programming
(e.g. concurrency)
background.

Knowledge of C or other
system-level language is a
plus.

Notes
All samples and labs in
this course use Go 1.15 -
the very latest production
release.

Our instructor will use the
GoLand IDE; attendees
may use any suitable editor
they wish to select

Go Introduction
What problem set is Go trying to solve?
A sensible evolution of C
Excellent for system programming
Setting up Go on your dev machine

Tour Of Language Features
Goroutines
Packaging
Building
Functions as first class citizens
Interfaces and structural typing
Lack of classes; no inheritance

Workspace Management
The Go workspace is how code is
managed
Naming and file placement conventions
Handling packages
Building & using commands and libraries
Role of $GOPATH
go build vs. go install
Creating / importing packages / exports

Go Type System
bools, strings, ints, runes (codepoints),
 floats, complex
Zero (default) values
Conversions
Type inferencing
Variables with var, :=, constants

Go Functions
Defining function signatures
Returning more than one result
Named returns
Advanced function usage

Constructs
if and if-else statements
for loop / defer statement
switch (how break is different)
("C's while is spelled for in Go" !!)

Grouping of Data Items
Arrays and maps
Slices
Structs and pointers

Types and Their Interfaces
Methods – functions with a receiver arg
Interfaces define sets of methods

Concurrency
Concurrency primitives built into Go itself
goroutines and channels
Synchronization

Testing
Go has a built in testing system
Test preparation
The testing package
Executing tests with go test

CGo – Calling C Code
Most OS APIs are written in C
Need to call them and other C libraries
How the pseudo-package C works
How Go and C code can interact

Remote Packages
How to access remote repositories
Use of go get
Incorporating remote repositories into app

Project
Review of Go usage in a larger project.

https://golang.org/doc/editors.html
https://www.jetbrains.com/go/

One Day Intensive Training Course For Senior Knowledge Professionals

Python 3
Language Features, OO Constructs, Framework,

Pip Installers, IPython, Jupyter Notebooks, Testing
Python is the world’s most versatile language. Unlike
other languages that tend to be really good at one area
but not so good at other areas, Python is really good at
many areas. We see Python being successfully used for
AI and machine learning, general application
development, rich shell scripting, configuration,
build systems, interactive notebooks, and lots more.
Some of the largest technology companies in the world
(e.g. Google) heavily use Python for their engineering
and production systems. Some of the latest hot
technologies (e.g. Keras and TensorFlow 2) use it
extensively; so now is time for your team to use Python.

This fast-paced course covers all important aspects of
Python programming., It is aimed at multi-disciplinary
software engineers already experienced with object
oriented programming using other languages. They will
find much of their hard-earned knowledge easily
transfers to Python programming – albeit delivered via
a significantly simpler and more compact syntax.
Invariably a given algorithm written in a different
language when re-written in Python will result in
smaller amounts of code, which is an excellent result
(after all, the best developer writes the least amount of
code).

Contents of One-Day Training Course

Target Audience
Developers wishing to
create modern apps using
the very latest version of
Python.

Prerequisites
Software developers with
practical programming
experience of an object-
oriented languages such as
C++, C#, or Java.

No prior Python
experience needed.

Python Tour
What Python offers
Feature tour
What make Python different from
 competing languages
Emphasis on clean syntax

Language Constructs
Common data types
Control flow
Loops
Functions
RegEx

OO Programming in Python
Classes: layout, methods and attributes
The __init__() method
Inheritance
Typing

Runtime Features
Memory management
Generators
Modules
Multithreading & locks (threading.py)

Error Handling
Raising and catching exceptions
 (try, raise, except, ..)
Designing with error handling in mind

Framework
The Python Standard Library offers:
* Collections
* File I/O
* Data access
* Network programming
* User interface

Pip
Standard installer
Pip usage
Python Packaging Index
Virtual environments
Python modules

(Interactive) IPython
Interactive shell that supports a wide range
 of Python features, from visualization to
 threading to data access
Also useful for and other languages

Jupyter Notebook
Jupyter Notebook mixes code, execution
 results, visualizations and markdown
 content in a single deliverable

Embedding Python
Many apps could benefit from a built-in
 macro language and Python is optimum
We explore how to easily embed Python
 runtime in your custom application

Testing
Exploring Python’s testing infrastructure
Unit testing – what’s similar & different
Mocking
Debugging

Interacting with C
Most OS APIs are written in C
How Python and C code can interact –
 threading, memory, lifecycles, exceptions
Handling common data types & constructs

Project
Using Python in a larger project to

 highlight its real-world capabilities

https://jupyter.org/
https://ipython.org/
https://docs.python.org/3/library/

One Day Intensive Training Course For Senior Knowledge Professionals 35

OCaml Functional Programming
FP Concepts, OCaml Language, OCaml Tools,

OCaml Library, Dune, Opam, Projects Using OCaml
“ OCaml is an industrial strength programming
language supporting functional, imperative and object-
oriented styles ” [https:// ocaml.org]. OCaml is best
known as a functional programming language and that
is what we focus on in this intensive course. OCaml
competes with Haskell to be the leading functional
language. For a number of reasons, we prefer OCaml. It
has a number of advanced features, a richer type system
and a more extensive system library. It is also used on
many cutting edge projects that interest us. Examples of
practical uses of OCaml include: the experimental redtt
(based on cubical type theory) and the well established

Coq proof assistants, samples in the important TAPL
book, the WebAssembly spec interpreter, the mirageOS
unikernel and Jane Street.

Functional programming is different from regular
object-oriented programming. So we start by looking at
FP for non-FP programmers. Then we explore all
aspects of programming with OCaml – the language,
tooling and system library. We also explore add-on
libraries. Our goal is to ensure all attendees are up to
speed with OCaml programming and immediately after
this course can be productive as OCaml developers.

Contents of One-Day Training Course

Target Audience
Experienced software
developers who wish to
start functional
programming using the
OCaml language.

Prerequisites
Attendees need prior
programming experience
in one of the mainstream
object-oriented
programming languages.

Important: This course
assumes attendees have no
prior functional
programming experience,
so in addition to teaching
OCaml, we also cover
general aspects of
functional programming.

FP For non FP Programmers
What is functional programming?
Mathematics is important for modern code
What is a variable (immutability)
Pattern matching
Handling change
Pure functions
Building more reliable code
Many FP ideas are seeping into other types
 of programming – why and how?

OCaml Tour
Language basics (control flow, etc.)
Structure source trees and individual units
main function-conventional/not necessary
Creating functions
Events and callbacks
Type inferencing

OCaml Language
Modules (submodules)
.mli interface definition files
More detailed look at functions
Visibility
Objects and object types
Classes / polymorphism / class types

Type mismatch and other errors
OCaml Runtime

OCaml runtime architecture
How code executes (e.g. as native code)
Dynamic linking -what’s involved in
 dynamically loading a library
The GC
Foreign function interface - interacting
 with C code (and other languages)

OCaml Library
Structure of standard library
Tour of main functionality areas
Common collections
Text handling
Threads library (modules: thread, mutex,
condition, event, ..)
Async and deferred computation

Tooling
Debugging
Testing
Lint
Pre-processor
Compilation tools – (parsing, etc.)
Abstract syntax tree

Dune
Dune is OCaml’s composable build system
Defining steps needed for build
Configuration
S-Expression syntax
Compilation flags

Opam
Opam is the OCaml package manager
Package repository
Extensive collection of pre-built packages
Managing locally installed packages
Packaging definition file – creating and
 populating for a custom project

Projects
Exploring usage of OCaml in a variety of
open source projects that have shipped, to
see how everything fits together in a larger
production setting

https://opam.ocaml.org/packages/
https://opam.ocaml.org/
https://github.com/ocaml/dune
https://opensource.janestreet.com/
https://mirage.io/
https://github.com/WebAssembly/spec/tree/master/interpreter
https://www.cis.upenn.edu/~bcpierce/tapl/
https://coq.inria.fr/
https://github.com/RedPRL/redtt
https://ocaml.org/

One Day Intensive Training Course For Senior Knowledge Professionals

The Bash Shell
Tour, Variables, Control Flow, Functions, Builtins,

History, Error Handling, Aliases, Best Practices
Bash is a powerful shell environment that provides
excellent interactive and scripting control of the
underlying OS, installed software platforms and can be
used to build and manage your own custom tools too.
Bash is good for repetitive chores, setting up an
environment, automating non-trivial workflows,
software builds and product installations.

The goal of well-written shell scripts is to allow
repeatable / configurable / reliable task execution. The
overall aim of this course is to equip attendees with a
clear understanding of how to achieve that using Bash.

Professionals skilled in the art of Bash scripting are
significantly more productive. Knowledge of Bash is a
“must-have” tool in the skillset of every heterogeneous
system administrator or developer. Though initially
popular on Unix and Linux platforms, Bash is now very
widely available, including on macOS and Microsoft
itself has added it to modern Windows (11 & Server
2022, as an optional install). With a little effort you can
even get Bash to work on mobile OSes. This wide
availability is important because it means the effort you
invest to learn Bash well now will pay repeated
dividends in future regardless of which OS you use.

Contents of One-Day Training Course

Target Audience
Administrators, developers
and power users who wish
to use the command line to
interact with the system
and to create shell scripts
to automate such activities

Prerequisites
Some previous experience
of shell usage required.

General knowledge of the
operating system
command layout is useful.

Overview
What is Bash good for?
Compliance with POSIX Shell Standard
Feature tour
Setting up Bash – for Linux/macOS,
 Windows Subsystem For Linux and
 Git Bash (limited)
How Bash compares to PowerShell

Control Flow
if
select / case
for
break / continue

Variables
set and unset for local variables
env
Export to child processes
Processes and Command Line
Command pipeline
Command line arguments
Exit code and results
Process architecture of executing Bash
exec command
$$ - process id of process executing shell

Functions
Parameters to functions
Viewing declared functions
Nested functions
Job control
Configuring the Environment

.bashrc
Start up scripts - profiles
Login shell

Scripts
Creating/calling/debugging Bash scripts
Sourcing – external library of functions
Job control
History
Arranging larger blocks of script

Builtin Functions
Wide range of builtins
Regular expressions
readline

Alias
Listing aliases
Role of aliases
alias and unalias functions

Error handling
Error handling in scripts
Signal handling
trap

File Handling
How files are represented in Bash
general file I/O
umask
read

Scripting Best Practices
Small chunks of script
Pay attention to debugging
Resilience to error situations
Similar to/different from regular
 programming

Project
Explores the scripting needed for
 automated workflow for a non-trivial
 enterprise scenario

One Day Intensive Training Course For Senior Knowledge Professionals 37

PowerShell 7
Setup, Syntax, CLI, CmdLets, Control Flow, DSC,
Modules, Security, Remoting, .NET Integration

PowerShell 7 is Microsoft’s latest innovative scripting
and automation engine. The older versions of
PowerShell were based on the .NET Framework and
only ran on Windows. In contrast, the new PowerShell
is based on .NET and and so can run on Windows,
Linux and macOS. Both PowerShell and .NET are open
source. PowerShell is the basis for Azure Cloud Shell.
PowerShell commands have a very flexible syntax and
can be executed immediately or stored in a script, and
later executed on the local machine or (after appropriate
security steps) on remote machines.

PowerShell commands are best created via the
PowerShell extension to Visual Studio Code; they can
also be created via any text editor.

PowerShell has a few key concepts that separate it from
previous shell languages. It is based on .NET and its
syntax borrows from C#, so moving between both is
quite easy. Like all shells, PowerShell works on the
basis of a pipeline. Unlike other shells, what flows along
the PowerShell pipeline are .NET objects. PowerShell
offers the idea of consistently named cmdlets
(<verb>-<noun>: e.g. Get-Process lists processes).

Contents of One-Day Training Course

Target Audience
System administrators and
software developers
wishing to benefit from the
modern approach to
scripting on Windows,
Linux and macOS.

Prerequisites
Good knowledge of
scripting with any similar
environment (e.g. Bash).

Tour of PowerShell
Core Ecosystem

Overview of all parts of PowerShell
Installing and configuring
Choosing an editor
Getting started with your first script
Exploring main language features

CmdLets
CmdLets (Command lets, as in, small
 commands) are individual pieces of
 functionality that can be used standalone
 or more usually combined to form larger
 scripts – we explore how they work
Best practices for creating CmdLets

Variables
Think of PowerShell as a simple program
 -ming language, so variables needed
Scope. naming, usage

More Language Constructs
Control flow
Functions
Exception handling with try / catch
Error info within exceptions using $_

Shell Constructs
Formatting output from within script
Accepting command line arguments
Environment
OS interaction

Providers
To extend the range of data stores
 exposed to PowerShell scripts, you can
 create and load custom providers
Architecture of a provider+sample impl

Server Automation
PowerShell works with many kinds
 of server automation packages
DSC Core and DSC Resource Kit
Chef, Ansible, Puppet
Scripting in Azure Cloud Shell

Security
Use of SSH as protocol for PSRP
Signing, execution policy, authenticode

PowerShell And OpenAPI
Review of use of OpenAPI as a very
 popular definition syntax for precisely
 describing REST API
Using AutoRest to generate CmdLet client

Remoting
WSMan
Windows management Framework
PowerShell Remoting Protocol: PSRP

.NET Extensions
Using PowerShell to call a
 standard .NET assembly and also
 calling into third party .NET assemblies
Designing and building our own
 custom .NET assemblies that can be used
 from PowerShell
Architectural guidance for how to structure
 larger integration

Project
Many larger commercial server products
 are now being delivered with a PowerShell
 interface (e.g. Vmware’s PowerCLI). We
 explore how to design something similar
 for our own sample server product

https://code.vmware.com/web/tool/11.5.0/vmware-powercli
https://devblogs.microsoft.com/powershell/cmdlets-via-autorest/
https://www.ansible.com/integrations/infrastructure/windows
https://devblogs.microsoft.com/powershell/dsc-resource-kit-release-april-2019/
https://code.visualstudio.com/docs/languages/powershell
https://github.com/dotnet/core
https://github.com/powershell/powershell

One Day Intensive Training Course For Senior Knowledge Professionals

Technology / Compute School

OS
● Windows System Programming Using C/C++
● Windows Multithreading Using C/C++
● Designing Server Platforms for Windows Server 2022 Using C/C++
● POSIX And Linux 5 System Programming Using C/C++
● pthreads – POSIX and Linux 5 Multithreading using C/C++
● Designing Server Platforms for POSIX And Linux 5 Using C/C++
● Microservices and Containers

Runtime
● Node.js 22 Runtime Programming Using TypeScript
● Browser Runtime Programming Using TypeScript
● Async, Parallel And Reactive (RxJS) Programming Using TypeScript
● .NET 8 CLR Programming
● .NET 8 Multithreaded And Parallel Programming
● .NET Managed Extensibility Framework (MEF)
● ML.NET
● Java 22 Runtime Programming
● Java 22 Multithreading

One Day Intensive Training Course For Senior Knowledge Professionals 39

Windows System Programming Using C/C++
Using low-level Windows OS API for maximum
performance, security, extensibility, flexibility

This course examines how to use the Windows C API to
design and develop advanced systems-level software.
The Windows C API has matured and gained a rock-
solid quality reputation with modern features such as
threads, symmetric multi-processing, system-wide
object model, powerful networking, asynchronous I/O
and Unicode. The Windows C API is the common
programmatic interface shared by all implementations
of the Windows OS family. There are some differences
in how it behaves on each OS, but it’s possible to create
a single EXE/DLL to run on all OSes. The focus of this
course is the API of Windows [11 | Server 2022].

Important features in the areas of the registry, file
systems, security and auditing are discussed. We cover
the many techniques available for inter-process
communication (e.g. pipes, mailslots, RPC and
WinSock). Applications may be made run-time
extensible by the configurable loading of DLLs.

Developers seeking extra performance and more
flexible low-level control over OS system calls will
benefit from writing their system-level application code
in C/C++ and this course tells them what they need to
know to quickly become productive.

Contents of One-Day Training Course

Target Audience
System architects and
experienced developers
who need to create
advanced systems using
the Windows C API.

Prerequisites
Attendees must have some
previous experience of
system-level programming

The Windows Platform
Windows Architecture
Windows SDK
Issues of interest to app system developers
 Overview of Windows C API

Applicability of Windows C API
Important OS functionality
Hardware issues
Win32/Win64 on various OSes
How to determine the underlying OS
“Write to the API, not the OS”

General Architecture
Major OS components and subsystems
Layout of OS and apps on file system
Common Windows C datatypes & headers
An application developer’s view of the OS

Memory Management
Flat memory structure
Various types of alloc APIs
Sharing memory / private heaps

File System
File APIs
Directory handling
Memory mapped files

Security & Auditing
How to programmatically interact with:
 Security descriptors
 Security attributes
 SIDs and tokens
 ACLs and ACEs
 Privileges
 WinStations
 Desktops

Registry
Complete coverage of the Registry APIs
Handling configuration data

SEH
Structured exception handling
Exception handlers
Termination handlers

DLLs
Comparison of DLLs & EXEs
DLL functions / variables / memory
Explicit loading of DLLs using:
LoadLibrary
FreeLibrary
GetProcAddress

C Run-Time Library (CRT)
Using the CRT with Win32/Win64
How the CRT is layered above the OS API
Inter-Process Communication

Anonymous vs. Named pipes
IPC using pipes & mailslots
Distributing functionality using RPC

Windows Networking APIs
How to programmatically talk to the net
Available APIs and when to use which
Managing network connections with WNet

WinSock & WinInet
A protocol-independent API
Relationship to Berkeley sockets
WSA functions
Coding client and server applications
Blocking and non-blocking comms
Advanced WinSock
Socket options /out-of-band data

One Day Intensive Training Course For Senior Knowledge Professionals

Windows Multithreading Using C/C++
Threading Concepts, Kernel Obj, Processes/Threads,

Synchronization, Async I/O, Debugging, DLLs
[Sample: lab exercises] This course explores how to use
the Windows C API to build sophisticated multithreaded
architectures. When designed correctly, multithreading
can substantially increase application performance and
responsiveness to distributed clients and end-users. The
Windows kernel object is the opaque foundation for
multithreading – based on this are the process, thread,
job & various synchronization objects - mutex, event,
semaphore and waitable timer – each of which targets
different needs. Thread activity, lifetimes and inter-
thread communication must be co-ordinated. Threads
impact how to develop DLLs, memory and debug.

Various higher-level design patterns may be used to
route workitems in multithreaded servers. The optimal
server architecture is one active application thread per
processor logical core. Tools may be developed to
determine which thread is blocked waiting on which
resource, and the state/owner of each resource. A server
must efficiently multiplex many I/O requests over a few
threads - which is the goal of I/O completion ports.

This course supplies attendees with an understanding of
the concepts underlying threading, together with
experience of multithreaded development.

Contents of One-Day Training Course

Target Audience
System architects and
experienced developers
who need to gain an in-
depth understanding of
Windows multithreading.

Prerequisites
Attendees must have good
experience of system-level
programming, on either
Windows or Linux.

Thread definition
Scheduling vs. synchronization
Parallelism and concurrency
Compute-bound and I/O bound apps
Race conditions, deadlock, starvation,
 priority inversion

Kernel Objects
Windows kernel objects
Usage counting
Kernel object handles
Sharing handles among processes

Processes
CreateProcess API & child processes
Retrieving the exit code of a process
Job objects

Threads
CreateThread API & Threadproc
The C runtime library
Thread priority & processor affinity
Thread management & lifetime

Synchronization
Critical Sections, Mutexes, Events,
Semaphores, Waitable Timers,
WaitForSingle/MultipleObject
The “Protect data, not code” principle

Memory and Threads
Dynamic & static Thread Local Storage
Heap storage vs. stack storage

Asynchronous I/O
Overlapped, APC & Scatter/Gather
I/O Completion Ports, Asynchronous I/O,
Overlapped, APC & Scatter/Gather
I/O Completion Ports

Thread Pools
OS-managed pools of threads for
 processing timers, work-items and I/O

DLLs and Threads
How threads interact with DLLs
Serialized DllMain, shared sections
Robust DLL design for threads

Debugging with Threads
Querying information about running
 processes/threads and their attributes
The serialized OutputDebugString API

Resource Management
Creating a custom resource browser, to
 display which thread is waiting on which
 synchronization resource
Threads with C++
Threads & exceptions; threads & classes
Accessing resources using smart pointers

Design Issues
Single Writer/Multiple Readers, Monitor,
Once-Off Initialization,Dining Philosopher
Calling legacy code from multiple threads
Converting legacy code to multithreading

Multithreaded Architectures
Pipeline, Producer-Consumer,
Work-Crew
Master-Slave Models
Create threads on demand vs. elastic pool

Multithreaded Project
Development of a complete multithreaded
 embedded HTTP web server that uses
 I/O completion ports to efficiently
 manage large numbers of requests

https://clipcode.net/assets/windows-multithreading-practice-lab.pdf

One Day Intensive Training Course For Senior Knowledge Professionals 41

Designing Server Platforms for
Windows Server 2022 Using C/C++

Installer, Service Process, Pipelines, Networking, Config, PerfMon,
WMI, EIF, Patterns, HA/HT, Project

Server platforms consist of a mixture of multiple
processes and threads, working in a co-ordinated
manner, to provide some service to numerous clients on
remote machines. These platforms must be flexible,
extensible, configurable, scaleable and controllable. A
pipeline architecture allows extensible processing of
messages. Many techniques are available for flexible
inter-process communication. Service processes are the
best way to deliver long-lived non-GUI functionality.

Building server platforms for Windows Server 2022 is
the logical choice for future-oriented projects.

If your team consists of senior developers experienced
with Windows and C/C++ and your team is assigned the
task of developing a high-quality server platform on
Windows Server 2022, then this is the ideal course to
get all team members up to speed on what is needed.

It covers design concepts, important Windows C APIs,
plenty of code samples and a chance to have
architectural questions answered. It explores extra
features (such as ETW, clean installer, PerfMon) that
will distinguish your team’s platform from the
competition.

Contents of One-Day Training Course

Target Audience
System architects and
senior software engineers
who need to create
advanced server platforms
for Windows Server 2022
using C/C++.

Prerequisites
General Windows system
programming and
especially multithreading
experience.

Designing Server Platforms
Multiple Processes/Threads
Central Service (Manager) / Worker
Processes / GUI+CLI Admin Processes
Variety of threading architectures

Service Process
SCM-service code interaction
Install+config of service
“Log on as a service” security right
Controlling worker processes

Platform Installation
How best to install server apps
Installer formats and server extensions

Platform Configuration
Rich config choices
Web garden/web-farm layout
Config changes without restarting

Pipelines
Processing paths for messages
Sequential and non-sequential steps
Structure of pipeline (handlers&modules)
Pipeline context

Dynamically loading DLLs
Dynamically loading DLLs
Updating a server’s DLLs without having
 to restart it

Networking
High performance sockets design
Eliminating buffer copying
Async I/O & Scatter/Gather I/O

Use of Http Server API
Same http.sys kernel service as used
 by IIS itself; Advanced HTTP protocol
support

Performance Monitor
Detecting bottlenecks
Tuning performance
Developing for Performance Counter

WMI
Windows Management Instrumentation
Management classes
Exposing your server through WMI
Management by GUI and CLI

Event Tracing For Windows
(ETW)

Tracing architecture
Event tracing APIs

Designing Platform Security
Leveraging Windows’ security features
Defense in depth platform security
Secure communication with remote clients

Design Patterns for Server
Platforms

Patterns to satisfy competing demands
Pooling, tuning, managing
Sharing, distributing
Extending, scheduling

High Availability /
High Throughput

Hardware for high-availability/throughput
ccNUMA, Interconnects
SAN, DAS, NAS
Clustering concepts
Design for high availability/throughput

Project
Overview of development of a sample
server platform for Windows Server 2022

One Day Intensive Training Course For Senior Knowledge Professionals

POSIX And Linux 5 System Programming Using C/C++
Using low-level C API for maximum performance,

security, extensibility, flexibility, portability
This course examines how to use POSIX standard APIs
and Linux libc-specific APIs to create system-level
software. POSIX defines specifications (documents)
and operating systems (such as Linux with its libc
library) or layered libraries (such as musl) implement
these specifications (code). POSIX is supported on a
variety of modern operating systems and so system-
level application code should strive to use it as much as
possible. Implementations can (and almost always do)
add extra functions to the API list defined by POSIX
and these extra functions provide very useful additional
capabilities, though they limit portability.

Developers seeking extra performance and flexible
low-level control over OS system calls will benefit from
writing their system-level application code in C/C++
(rather than a language that comes with a heavy
runtime, such as Java or C#). This course tells them
what they need to know to become quickly productive.

We explore the entire path from application code to libc
calls, through system calls right to the kernel where the
actual functionality is delivered. We look closely at the
architecture of how the OS programming interface is
exposed to applications.

Contents of One-Day Training Course

Target Audience
System architects and
experienced developers
who need to create
advanced system software
using POSIX and Linux
libc APIs.

Prerequisites
Attendees must have some
previous experience of
system-level
programming.

Please note: This course
does not cover pthreads
(multithreading with
POSIX) – we offer a
separate detailed course for
pthreads development.

Big Picture
How everything fits together - POSIX,
 the standard C library, libc, Linux
 System Calls, the Linux Kernel
Alternative implementations: musl, newlib
Portability & POSIX on non-linux OSes
Role of the Linux Standard Base (LSB)
What’s needed for development

 Overview of POSIX Specs
POSIX.1-2017 : latest spec with sections
 on base definitions, system interfaces
 (APIs), shell & utilities, rationale
“Write to the API, not the OS”
Relation between POSIX and C (“POSIX
 is a superset of the standard C library”
 and libc API is a superset of POSIX)
What is specifically outside POSIX scope

Linux General Architecture
Structure of Linux kernel and userspace
Role APIs and system calls play
Major OS components and subsystems
Layout of OS and apps on file system

Linux libc
Common datatypes & headers
An application developer’s view of the OS
Let’s trace a system call from app to API
 to System Call Interface to kernel
Trap 0x80 for x86
Major POSIX Functional Areas
STREAMS, I/O, signals
Regular expressions
File descriptors & advanced file handling
Process creation (fork/exec) & status

Inter-Process Communication
IPC overview
Message passing
semaphores
Shared memory

What libc Adds To POSIX
What’s in libc above and beyond POSIX
 e.g. cgroups (underpins containers)
Multimedia
Newer libc system APIs not in POSIX
Security concepts

Linux Binaries
File structure
Programmatic interaction
Creating binaries
Dynamic loading of .so

Scheduling
Overview of Linux scheduling
How apps use APIs to influence scheduling
Priority

Sockets
How to programmatically talk to the net
Available APIs and when to use which
A protocol-independent API
Coding client and server applications
Blocking and non-blocking comms
Socket options / out-of-band data
Addressing, queuing signaling, errors,
Advanced sockets

Large Codebases
Large codebases need more than POSIX
Retain portability via
 e,g. Apache Portable Runtime or ACE

http://www.dre.vanderbilt.edu/~schmidt/ACE.html
https://apr.apache.org/
https://github.com/opencontainers/runc/tree/master/libcontainer/cgroups
https://www.tldp.org/LDP/khg/HyperNews/get/syscall/syscall86.html
https://stackoverflow.com/questions/9376837/difference-between-c-standard-library-and-c-posix-library
https://stackoverflow.com/questions/9376837/difference-between-c-standard-library-and-c-posix-library
http://pubs.opengroup.org/onlinepubs/9699919799/
https://wiki.linuxfoundation.org/lsb/about
https://sourceware.org/newlib/
https://www.musl-libc.org/intro.html

One Day Intensive Training Course For Senior Knowledge Professionals 43

pthreads: POSIX And Linux 5 Multithreading using C/C++
Threading Concepts, Creating/Managing Threads,
Synchronization, pthreads & .so, NPTL Internals

[Sample: concept map] This course explores how to use
the pthreads C API to build sophisticated multithreaded
architectures for modern POSIX-compatible OSes such
as Linux 5 (e.g. Ubuntu 20.04 LTS). When designed
correctly, multithreading can substantially increase app
performance and responsiveness to distributed clients
and end-users. POSIX defines a multithreading
specification commonly known as pthreads. This is a C
API that strictly specifies the expected behavior of
threading and synchronization primitives. Code written
to work against pthreads can run on any OS that
implements this spec. Linux is one such OS and the

focus for this course, but it is noted that pthreads is also
implemented on a wide variety of other popular and
specialist OSes. This course supplies attendees with an
understanding of the concepts underlying
multithreading, together with hands-on experience of
multithreaded development on Linux. Topics covered
include a comprehensive tour of thread creation and
lifetime management, the various synchronization
approaches, how threads interact with share libraries,
memory access and debugging, intra-thread comms and
various higher-level design patterns to work with large
multithreaded servers.

Contents of One-Day Training Course

Target Audience
System architects and
experienced developers
who need to gain an in-
depth understanding of
POSIX and Linux
multithreading.

Prerequisites
Attendees must have good
experience of system-level
programming on Linux.

Thread definition
Scheduling vs. synchronization
Parallelism and concurrency
Compute-bound and I/O bound apps
Race conditions, deadlock, starvation,
priority inversion

Threads
Tour of pthreads.h
Overview of main APIs and C structures
Creating a thread with pthread_create()
The threadproc
Thread priority
Thread management & lifetime
pthread_exit() and joining a thread to
 catch exit and to access exit code
pthread_[detach|attr_setdetachstate]()
Thread cancelation
C11/18 threads vs. pthreads (quite similar)

Synchronization
Conditionals, mutexes, rwlock, spin,
barrier – compare & contrast
The “protect data, not code” principle
pthread_cond_[init|destroy|attr_init]()
pthread_mutex_[lock|trylock|unlock]
Blocking vs. non-blocking
pthread_[rwlock|spin|barrier]_init()

Thread Pools
Managing pools of threads for
 processing timers, work-items and I/O

Memory and Threads
Thread local storage : pthread_key_create
Heap storage vs. stack storage
pthread_attr_[set|get]stack[size|addr]()

Shared Libraries and Threads
How threads interact with shared libraries
Serialized methods
Robust .so design for threads

Debugging with Threads
Querying information about running
 processes/threads and their attributes
Serialized calls

Resource Management
Creating a custom resource browser, to
 display which thread is waiting on which
 synchronization resource
Threads with C++
Threads & exceptions; threads & classes
Accessing resources using smart pointers

Design Issues
Single Writer/Multiple Readers, Monitor,
Once-Off Initialization,Dining Philosopher
Calling legacy code from multiple threads
Converting legacy code to multithreading

Multithreaded Architectures
Pipeline, Producer-Consumer,
Work-Crew and Master-Slave Models
Create threads on demand vs. elastic pool

NPTL Internals
Native POSIX Thread Library (NPTL)
 implements pthreads on Linux
Threads and Linux scheduling

Multithreaded Project
Development of a complete multithreaded
 embedded HTTP web server that
 efficiently manage large numbers of
 requests

https://knowist.ac/assets/clipcode-concept-map-for-pthreads.pdf

One Day Intensive Training Course For Senior Knowledge Professionals

Designing Server Platforms
for POSIX And Linux 5 Using C/C++

Installer, Daemons/Worker Process, Pipelines, Networking, Config,
Performance, Syslog, Systemd, Patterns, HA/HT, Project

Server platforms consist of a mixture of multiple
processes and threads, working in a co-ordinated
manner, to provide some service to numerous clients on
remote machines. These platforms must be flexible,
extensible, configurable, scaleable and controllable. A
pipeline architecture allows extensible processing of
messages. Many techniques are available for flexible
inter-process communication. Service processes are the
best way to deliver long-lived non-GUI functionality.

Building server platforms for Linux is the logical choice
for future-oriented projects.

If your team consists of senior developers experienced
with Linux and C/C++ and you are tasked with
developing a high-quality server platform on Linux,
then this is the ideal course to get all team members up
to speed on what is needed. We recommend developing
as much as possible using POSIX APIs (for portability),
with careful use of additional APIs where it makes
sense. This course covers design concepts, important
POSIX APIs, plenty of code samples and a chance to
have architectural questions answered. It explores extra
features (such as Systemd and syslog) that will
distinguish your team’s platform from the competition.

Contents of One-Day Training Course

Target Audience
System architects and
senior software engineers
who need to create
advanced server platforms
for Linux using C/C++.

Prerequisites
General Linux system
programming and
especially multithreading
experience.

Designing Server Platforms
Multiple Processes/Threads
Central Service (Manager) / Worker
Processes / GUI+CLI Admin Processes
Variety of threading architectures

Daemon Process
Overview of systemd
Install+config of daemon
Security right
Controlling worker processes

Platform Installation
How best to install server apps
Installer formats and server extensions

Platform Configuration
Rich config choices (role of /etc)
Web garden/web-farm layout
Config changes without restarting

Pipelines
Processing paths for messages
Sequential and non-sequential steps
Structure of pipeline (handlers&modules)
Pipeline context

Dynamically loading .so
Dynamically loading shared libraries
Updating a server’s shared libraries
 without having to restart it

Networking
High performance sockets design
Eliminating buffer copying
Async I/O

Use of Apache Server API
Building custom Apache HTTP Sever
 module to link it to your daemon process

Performance
Detecting bottlenecks
Tuning performance
Developing with performance in mind

Monitoring
Building server platform with sysadmins in
 mind – what capabilites do they need?
How to adding monitoring to your platform

Syslog
Logging architecture
Event tracing APIs

Designing Platform Security
Leveraging Linux security features
Defense in depth platform security
Secure communication with remote clients

Design Patterns for Server
Platforms

Patterns to satisfy competing demands
Pooling, tuning, managing
Sharing, distributing
Extending, scheduling

High Availability /
High Throughput

Hardware for high-availability/throughput
ccNUMA, Interconnects
SAN, DAS, NAS
Clustering concepts
Design for high availability/throughput

Project
Overview of development of part of a
 sample large server platform for Linux
Focus as much as possible on POSIX APIs
Portability and use of OS-specific APIs

One Day Intensive Training Course For Senior Knowledge Professionals 45

Containers And Microservices
Concepts, OCI, runC, CNCF, Containerd, Docker,

Microservices, App Architecture, Networking, Project
Microservices have revolutionized server-side
application development. Most modern engineering
teams have evolved to running as much code as possible
in containers and benefit from the range of
enhancements they offer.

As an application developer, you can think of a
container as an efficient sandbox within which your
process runs (multiple processes can run in the one
container, but usually it is one process per container).
Containers offer a sandbox based on unique namespaces
and c(ontrol) groups (e.g. resource limits/accounting).

The world of containers is undergoing rapid
transformation (Docker and its components - e.g. runc -
are important but they certainly are not the whole
story). Developers really need to understand how all the
moving parts fit together in the modern container world.
They also need to be aware of how similar and
contrasting containers are with traditional “process in
OS” approach. This course focuses on individual
containers and how attendees can build microservices
(slice of their application) to run inside-a recommended
follow-on course on Kubernetes explores how to
orchestrate clusters of containers in innovative ways.

Contents of One-Day Training Course

Target Audience
Server application
developers wishing to
compose applications from
many microservices
running in containers.

Prerequisites
Developers experienced in
server-side software.

Knowledge of the Go
language is useful.

Note
Please note this course
does not cover Kubernetes
(apart from a brief
introduction). We have a
separate course dedicated
to Kubernetes, which we
recommend attendees
takes after this course.

Container Landscape
What containers offers over VM approach
Intro to microservice development
Big picture review of the sometimes
 confusing container landscape: its
 standard bodies, specs, commercial
 businesses, cloud offerings, tooling
OCI -Open Container Initiative
https://www.opencontainers.org and
https://github.com/opencontainers
“An open governance structure for ..
 creating open industry standards around
 container formats and runtime”
Three specs:
* Image is for file system layout
* Runtime is how to run a container
* Distribution (new) is how images travel
Open source projects – runc (includes
libcontainer), image-tools, runtime-tools
(runc is the runtime used by Docker and
 by most Kubernetes installations)

CNCF - Cloud-Native
Computing Foundation

https://www.cncf.io
“builds sustainable ecosystems .. around a
 constellation of high-quality projects that
 orchestrate containers as part of a
 microservices architecture.”
Review of CNCF projects, including ...
* Containerd - https://containerd.io/

Docker
The Docker toolsuite is the market-leading
 container platform – let’s explore what

 services it offers and how to use them
Available for Linux, macOS and Windows

Kata Containers
OCI-compliant open-source project to run
 containers via a light-weight hypervisor
 (combine containers and VM approaches)

Building Microservices
Sub-dividing a large app into microservices
As an application developer, what steps
 you need to take to prepare your code to
 run inside a container

Application Architecture
What steps are needed to build a
 microservice and how to optimize?
Handling data, IPC, config, lifecycle, etc.

Microservices And Security
Under what security context does your
 microservice code run?
Importance of isolation
Microservices And Networking
* CNI (container networking) -
 https://github.com/containernetworking
* Envoy (distributed proxy) -
 https://www.envoyproxy.io

Tour of Source Trees
Understanding internals is good: exploring
 runc CLI and libcontainer (written in Go),
 containerd (written in Go), Docker (written
 in Go), Kata (yup, also written in Go)

Project
How best to partition a large server app to
 run as microservices in many containers
Practical architectural guidance

https://www.envoyproxy.io/
https://github.com/containernetworking
https://containerd.io/
https://www.cncf.io/
https://github.com/opencontainers
https://www.opencontainers.org/

One Day Intensive Training Course For Senior Knowledge Professionals

Node.js 22 Runtime Programming Using TypeScript
Feature Tour, Event Loop, Non-Blocking IO, VM,

Crypto, Utilities, Streaming, N-API, Project
Node.js is a cross-platform easy-to-use runtime based
on Google’s high performance V8 JavaScript execution
engine (as found in Chrome). Node also comes with a
well crafted and substantial framework which covers
many application areas.

Node has a number of desirable core characteristics –
simplicity (it is very easy to get started using Node);
modularity (everything is based on modules, which can
grow over time); extensible (both by JavaScript /
TypeScript code and by C/C++ code [using N-API])
and asynchronous / event-driven (non-blocking IO).

This course cover the latest edition – Node.js 22 – from
the ground up for developers with little or no previous
Node experience but a strong desire to rapidly become
proficient in Node. We compare Node to other popular
runtimes that they might know and see there are many
similarities (language VM, package management,
framework layout, tools, etc.) but also some differences.

Note this course does not cover the Node.js HTTP[|S|/2]
modules – we have a separate detailed course covering
these along with Express and PUG, which is an ideal
follow-on course to this one.

Contents of One-Day Training Course

Target Audience
Experienced web
developers who wish to get
up to speed developing for
the Node.js runtime using
TypeScript.

Prerequisites
No previous experience of
Node.js required.

General experience with
web programming is
required.

All demos and lab
exercises will be in
TypeScript, so attendees
need to know TypeScript.

Feature Tour of Node.js 22
Node.js 22 is the latest edition of this very
popular server-side runtime for web, CLI
and other workloads – let’s see what Node
has to offer

Node And TypeScript
Most Node apps up to now have used
 JavaScript – we will use TypeScript
Benefits of TypeScript for server coding
Using Node from TypeScript (.d.ts files)

Launching Node
Command line options for Node itself
Environment settings
Keeping a node app running

Event Loop
Review of how the event loop works
The important role events play in Node
The Events module
EventEmitter
Preference for asynchronous
Role of listeners

Non-Blocking IO
Accessing the file system
Accessing networks

Network Programming
DNS
UDP/Datagram
TCP using the Net module
IPC servers using the Net module

V8
Google’s V8 engine provides the core
 execution environment for node
Using the V8 module

OS Module
Portable access to capabilities/services of
the operating system on which Node runs

VM
The VM module can be used to compile
and execute code in a language VM

Utilities
Utilities module
TTY
Console
Timers
StringDecoder

Crypto
Cipher
Decipher
Handling certificates
Hashing

Streams
Stream types – readable, writable, duplex
 and transform
The readline module
process.stdout

N-API
Building portable C/C++ modules that
work with Node using the new N-API

Advanced Node
Process and child processes
The cluster module
Shared server ports and child processes

CLI Project
Building a command-line app showing how
to use many parts of the Node framework
together in a realistic app

One Day Intensive Training Course For Senior Knowledge Professionals 47

Browser Runtime Programming Using TypeScript
File API, IndexedDB, GeoLocation, Beacon, HTTP/x,

Events, CORS, Fetch, Formats and Device Info
The programming environment inside the modern web
browser has significantly matured and now offers a rich
and diverse range of capabilities, some at the UI level
and some at the underlying runtime level. Many of the
newer features are currently not being fully exploited by
web developers, who focus exclusively on the UI. This
course aims to change that by exploring in depth the
non-UI aspects of browser programming, using the
TypeScript language for all demos and lab exercises.

The runtime programming APIs in a modern browser
now rival what modern OSes offer. A web app has

many natural advantages over mobile apps (here’s four:
the power of the URI, works everywhere, cloud-
friendly, immediate app updates). In areas such as
sandboxed file access, networking, data formats and
device info, a modern browser offers the web
application developer a comprehensive selection of
functionality that, when used correctly, can easily
compete with what is available for native mobile apps.

IMPORTANT: This course does not cover parallel (web
worker) & asynchronous programming – we offer a
separate full course that covers these topics in detail.

Contents of One-Day Training Course

Target Audience
Web developers wishing to
fully leverage the runtime
(non-UI) capabilities of
modern web browsers.

Prerequisites
Good experience of web
development, including
modern HTML.

Knowledge of the
TypeScript programming
language.

Modern Web Platform
Tour of the modern web platform (what
 we already know / what is less familiar)
Major features and which browsers
 implement them (caniuse.com and
 iwanttouse.com websites)
Dynamically detecting in code available
 browser capabilities and optimizing app

File API
File Sandboxing
Accessing and updating files
File metadata and raw blob content
File[Reader|Writer|system] API

Indexed DB
A B-tree like persistence mechanism with
 powerful indexing that can serve as basis
 for in-browser client database
Comparison with other storage options

Text Handling And JSON
Handling various text encodings
TextEncoder and TextDecoder
JSON parsing and generation
Use of JSON in the browser

GeoLocation
“This specification defines an API that
 provides scripted access to geographical
 location information associated with the
 hosting device.”

Beacon
Sending data asynchronously to server
 (e.g after page close)
navigator.sendBeacon
Setting priority

HTTP/2 & HTTP/3
Latest generation of HTTP protocol
Binary, multiplexed, full duplex, priority
Server push
New app architectural possibilities

Server Sent Events
How it works
EventSource API
Event streams
Event handlers

CORS
Cross-Origin Resource Sharing
Role of origin in HTTP protocol
cross-origin access
CORS preflight request and CORS request

Fetch
A significantly improved replacement for
 XmlHttpRequest
“The Fetch standard defines requests,
 responses, and the process that binds
 them: fetching.” (WHATWG)

Data Formats
Brotli Compressed Data Format
Data URIs using base64 encoding
data-* attributes

Device Info
Accessing device details
Vibration API
Battery status

Project
Bringing together the ideas covered in this
 course to design and build a specialist
 runtime engine to execute in a browser

https://fetch.spec.whatwg.org/
https://www.w3.org/TR/geolocation-API/
http://www.iwanttouse.com/
https://caniuse.com/

One Day Intensive Training Course For Senior Knowledge Professionals

Asynchronous, Parallel & Reactive (RxJS)
Programming Using TypeScript

Managing time, multiple workers and data streams
[Sample: internals] Coordinating multiple activities is
one of the most difficult areas of advanced application
development. In this course we explore all the different
options open to developers and see how they can be
integrated into modern TypeScript applications.

All modern hardware (even low-end mobile devices)
support multiple CPU cores and allow parallel code
execution. All have timers that allow asynchronous
workloads to be queued for execution in the future. It is
up to app developers to exploit the varying capabilities
of hardware available to them to deliver optimum apps.

This course is ideal for TypeScript developers who
wish to more tightly manage how their code and data
are processed - where, when and in what order.

All samples and labs in this course use TypeScript as
we think it is best for larger applications – much of
what is covered is useful to JavaScript developers too.

We explore code both running on the server (e.g. as part
of a Node.js server application) and in the modern
browser (as standalone TypeScript code, or as part of a
larger Angular application).

Contents of One-Day Training Course

Target Audience
TypeScript developers
who wish to have more
control within their apps
over time, multiple
workers and observable
data streams

Prerequisites
Understanding of
asynchronous and multi-
threaded programming
from other environments,
together with knowledge
of TypeScript.

Options for Async & Parallel
Review of all the possibilities available to
 TypeScript developers to manage time,
 distribute code across contexts to be
 executed and handle data streaming

 JavaScript VM Event Loop
Need to fully understand the event loop
 and event ordering to optimize our code
Adding events and consuming events

Promises & Timers
How a promise works: in real life / code
Programming with a promise
Error handling
Using VM timers
What setTimer(0, <func>) means
Promises/A+ (https://promisesaplus.com)

TypeScript async/await
Making asynchronous source more
 readable while maintaining capabilities
Use of async and await keywords
Designing an asynchronous framework

Web Workers
A web worker is a thread
Threads cooperate via message passing
Creating and managing web workers
Types of web workers
Worker lifetime control
[Dedicated|Shared]WorkerGlobalScope
WindowOrWorkerGlobalScope
Messaging Between Workers

Message ports / Message parameters
PostMessage / onMessage
Organizing message flows

Shared Array Buffer & Atomics
Shared memory within a browser
Atomics provide synchronization to protect
 shared array buffers

Zone.js
Architecture of Zone.js
Multiple zones can live within the same
 web worker or main browser context
Creating and using zones
Zone.js is heavily used in Angular - how?

RxJS Overview
Observerable / Observer / Subject
Hot & cold
next/error/complete
Testing RxJS code using jasmine-marbles

RxJS Streams
An observable as a dual of an enumerable
Subscriptions
App architecture and stream processing

RxJS Operators
Processing individual elements via a large
 collections of operators
What’s new with pipeable operators
Custom operators

Advanced RxJS
Notifications
Schedulers (incl. new TestScheduler)
Connectables

Project
Having explored the fundamental constructs
 for managing time, code execution and
 data streams, we conclude with a project
 that demonstrates all these ideas together

https://github.com/ReactiveX/rxjs/blob/master/doc/writing-marble-tests.md
https://promisesaplus.com/
https://clipcode.net/assets/clipcode-zonejs-internals.pdf

One Day Intensive Training Course For Senior Knowledge Professionals 49

.NET 8 CLR Programming Using C#
Architecture, Assemblies, Type/instance, Attributes,

Reflection, Security, Nuget, RegEx, Unmanaged
The .NET 8 Common Language Runtime (CLR) is the
foundation for all aspects of the modern .NET initiative.
It offers leading edge services for applications on
Windows, macOS, Linux and more. The .NET provides
a “managed” runtime environment in the sense that an
in-process runtime engine, separate from your code, to
assist with its execution. Its modern feature-set includes
a system-wide object model, full control of memory
management, granular security, innovative metadata,
sophisticated type loading, and virtualized contracts
between types (so that their physical layouts may be
defined / optimized at runtime).

Regardless of which .NET application type you are
building – rich client UI, web UI, web service, class
library, Windows Service, console - you must
understand how it works with the CLR and how it can
programmatically interact with the capabilities of the
CLR..NET 8 works with the CLR to provide a rich
.NET Standard-based class library.

.NET 8 is becoming the platform of choice for new
projects. It is highly regarded and is gaining a
reputation as a solid foundation for innovative
solutions.

Contents of One-Day Training Course

Target Audience
System architects and
senior software engineers
who need to rapidly get up
to speed with .NET CLR
programming.

Prerequisites
General understanding of
high level .NET concepts.

Attendance at our C# 12
Language course or
equivalent experience is
needed.

This course covers
.NET 8 using C# 12 and
Visual Studio.

Overview
Multiple implementations of .NET
.NET Standard is a specification that
 mandates how all should work
.NET Framework: stable, mature (20yrs)
.NET Core (1/2/3): Win/macOS/Linux

 .NET 5/6: New merged approach
Modern – e.g. WebAssembly integration
For new codebases, choose .NET 8

CLR Architecture
Feature-rich runtime for many languages
What capabilities does it provide?

Assemblies
An assembly is a (DLL-like) delivery &
management unit for CLR types
Strong names / versioning
Modules and assemblies
Locating assemblies

Types
Importance of type / CLS & CTS
Types and different languages
System.Object & identity
Nullable Annotations

Advanced Types
Methods – virtual, abstract, overloaded
Type hierarchy / relationships / generics
Properties, enumerations, constants, fields

Instances
Types & instances
Reference type and value type
Finalisation / IDisposable
Garbage collection / stack and heap
Calling methods/anonymous methods

Compiler Options
Native compiler vs. JIT - contrast
Using .NET Native
.NET on macOS and Linux

Nuget
Using .NET’s package manager
Creating your own packages

.NET 8 API
Extensive quality class library
Solves problems with .NET Framework
Portable; small; new features (e.g. SIMD &
AssemblyDependencyResolver)
Nullable Annotations

Config
Externalized Configuration
Handling configuration data
Format of config files & custom settings
Application and machine configuration

Custom Attributes
Advantages of using attributes in IL
Pseudo-custom attributes
Creating & detecting attributes

Metadata & Reflection
What data is stored along with code
Manifest & metadata tables
Peaking inside an assembly
Discovering types

Security
Identity features of .NET security
Certificates & permissions
Command-line and UI security tools

The Unmanaged World
P/Invoke & how to call C libraries

One Day Intensive Training Course For Senior Knowledge Professionals

.NET 8 Multithreaded & Parallel Programming
Concepts, Kernel Objects, Threads, Synchronization,
Tasks, TPL, PLINQ, Parallel Collections, TPL Dataflow

[Sample: presentation] This course examines how to use
.NET 8 to build sophisticated architectures using
multithreaded and parallel programming. When
designed correctly, these can substantially increase
application performance and responsiveness to
distributed clients and end-users. The kernel object is
the opaque foundation for Windows multithreading –
based on this are .NET constructs for the process, thread
& various synchronization objects - mutex, event,
semaphore, waitable timer and more – each of which
targets different needs. Thread activity, lifetimes and
inter-thread communication must be co-ordinated.

A server must efficiently multiplex many I/O requests
over a few threads – which is precisely the goal of
threadpools in .NET 8. We see major benefits from the
addition of parallel programming to .NET, especially
with TPL, PLINQ, concurrent collections and TPL
Dataflow. We explore the critical role of Task in this
new approach.We see scope for custom enhancements to
TPL in a variety of scenarios.

This course supplies attendees with a clear
understanding of .NET multithreaded and parallel
programming, together with experience of their use.

Contents of One-Day Training Course

Target Audience
System architects and
experienced developers
who need to gain an in-
depth understanding
of .NET 8 multithreaded
and parallel programming.

Prerequisites
Attendees must have
experience of systems-
level programming.

Attendance at our .NET 8
CLR Programming Using
C# 12 course or equivalent
experience needed.

Multithreading Concepts
Thread definition
Scheduling vs. synchronization
Parallelism and concurrency
Compute-bound and I/O bound apps
Race conditions, deadlock, starvation,
priority inversion

OS Foundation
(e.g. kernel objects)

Win32 kernel objects
Usage counting / Kernel object handles
Sharing handles among processes

Managed Threads
OS threads and managed threads
Creating a new managed thread
The ThreadStart delegate
Thread priority and processor affinity
Thread management & lifetime

Synchronization
Monitor (C# lock), Mutex, Event, Timer
Waiting (once, many), SpinWait
The “Protect data, not code” principle
The Interlocked class / Semaphore

Memory, Threads and SIMD
Thread data slots
VolatileRead/Write
SIMD - Single instruction, multiple data
Intrinsics

Managed Thread Pool
The thread pool is a runtime-managed
 pools of threads for processing I/O,
 work-items and timer handlers
Architecture of large multithreaded app

Parallel Programming in .NET
Takes a higher level view of concurrency
Parallel querying
Parallel algorithms and supporting types

Task
What is in System.Threading.Task
Detailed look at Task class and how to use
Parallel / TaskFactory / TaskExtensions

PLINQ - Parallel Linq
Applying the ideas of Linq to Objects
 across multiple threads
Query operartors and threading
Additional capabilities of PLINQ

Concurrent Collections
Original .NET collections are not thread-
 safe, and why this can be good/bad
New concurrent collections offer similar
 API surface to original, but now threadsafe
Deep dive: System.Collection.Concurrent

Advanced Tasks & PLINQ
Schedulers
Lambda expressions
Custom operators
Partitioners

TPL Dataflow
Library of dataflow constructs
Message passing
Based around composition of blocks
Very useful for certain kinds of workloads

Multithreaded Project
A complete multithreaded embedded HTTP
web server that uses a thread pool to
efficiently manage very many requests

https://www.clipcode.net/assets/tpl-dataflow.pdf

One Day Intensive Training Course For Senior Knowledge Professionals 51

.NET Managed Extensibility Framework (MEF)
Overview, Concepts, Export & Imports, Metadata,

Catalogs, Providers, Contract Adapters, Project
The Managed Extensibility Framework – MEF – is a
powerful composition framework from Microsoft for the
creation of extensible applications composed from parts
supplied at runtime. MEF is an open-source project and
in its latest iteration is supplied via nuget and is
documented as part of the .NET Platform Extensions.

MEF is suitable for use with large-scale modular apps
(the Visual Studio editor itself combines its components
using MEF). Application architects are being asked to
provide designs exhibiting high levels of extensibility
and flexibility and MEF is a key building block.

MEF allows you to create parts (i.e. components) using
managed code that identifies imports (what the part
needs from other parts) and exports (what the part offers
to others). Parts come from catalogs and the
composition process is managed by various export
providers and composition services.

This course is your first step in getting up to speed with
the MEF way of dynamically composing apps from
components. Attendees will learn about the extensibility
concepts in MEF and get practical guidance on how to
use MEF when designing custom own apps.

Contents of One-Day Training Course

Target Audience
Senior software engineers
wishing to author
composable parts using
MEF.

Prerequisites
Attendees are expected to
be experienced C#/.NET
developers having
familiarity with modern
object-oriented design
concepts.

Overview
How best to tackle extensibility?
Relationship to IoC
What composition delivers
Developer setup

Concepts
Composition
Parts
Imports
Exports
Contracts and metadata
Adapters
Export providers

Imports & Exports
Attributes
Single and multiple exports
Describing exports / ImportMany
Eager and lazy export loading

Metadata
Dictionary of name/value pairs
Strongly typed metadata
CreationPolicy

Catalogs
Role of catalogs is to supply
 parts and definitions
TypeCatalog
AssemblyCatalog
DirectoryCatalog
AggregateCatalog

Composition
CompositionContainer
PartNotDiscoverable attribute
Initial parts

Export Providers
Role: to provide exports
CompositionContainer manages a topology
 of export providers
Flexibility in supplying parts
Defaults/features in product line/multi SKU

Contract Adapters
Concept of contract adapters
Why & how to adapt between contracts
Contract name and metadata constants
Writing an adapter

Primitives
Definitions – Part, Import/Export
ContractBasedImportDefinition
ComposablePart
ComposablePartCatalog

Error Handling
ICompositionElement
Custom exceptions
Composition errors
Debugger proxies
Debugging Session
Debugging app through the MEF source to
 see where errors are raised and handled

Designing MEF Applications
Think about the MEF cascade
Batch of top-level parts
App-internal parts from AssemblyCatalog
Extensions from DirectoryCatalog

Project
We examine a project that explores
 extensibility models and implements
 important concepts covered in this course

https://stackoverflow.com/questions/53097067/what-are-net-platform-extensions-on-docs-microsoft-com

One Day Intensive Training Course For Senior Knowledge Professionals

ML.NET
Overview, Architecture, Estimators, Training,

Predictions, TensorFlow, Performance, Data, Project
It may come as a surprise to many but 80% of the
codebase of a typical machine learning application has
nothing to do with machine learning. A typical ML
application needs code for multithreading, database
access, lots of mathematics, network connections,
configuration files, containers etc. and all this is
common to any kind of application. This is important to
keep in mind when selecting a ML framework – as it is
one (of two) key reasons many C#/.NET developers
pick Microsoft’s ML.NET as their ML framework of
choice. The other reason being that ML.NET is simply
an excellently designed ML framework.

ML.NET is an open source project with a GitHub repo,
that is undergoing rapidly enhancement, as shown by
the very frequent commit cadence.

This course helps C#/.NET developers use their existing
skillset and managed codebases to create modern ML
applications. Machine learning is often seen as complex
from the outside by developers not familiar with the
area, but when approached in small incremental steps
(as we do in this course), it becomes a gradual learning
experience. The key as we see is to get to running code
quickly and then gradually expand capabilities.

Contents of One-Day Training Course

Target Audience
C#/.NET developers
wishing to create machine
learning applications for
managed code.

Prerequisites
Knowledge of C# 12
and .NET 8.

Though ML.NET provides
excellent implementations
of what we need, it is still
useful to have a high-level
understanding of what is
going on. Hence some
foundational knowledge of
mathematics is required, as
machine learning is so
heavily mathematics-
based. (MLNET does
implement the
mathematics we need).

ML.NET Overview
“ML.NET enables machine learning tasks
like classification ... regression ... and
many other ML tasks such as anomaly
detection, time-series-forecast, clustering,
ranking, etc.” [link]

ML.NET Architecture
High performance meets ML meets .NET
Tour of major components
DNN
Transforms
Learning algorithms

ML.NET Tooling
Installing ML.NET:
 dotnet add package Microsoft.ML
ML.NET Model builder / ML.NET CLI
Use with Visual Studio 2022

Context and Data
MLContext is the connection between
 your app’s code and the ML.NET engine
Creating and using a context
Context configuration
ML involves lots of data – so need to
 examine how to supply data (bulk,
 streamed, other) to the ML engine

Estimators
Role of estimator-“untrained transformer”
IEstimator and its implementations
Idea of fit

Transforms
Image
Onnx
TimeSeries

Training And Predictions
What is involved in training a model
Using trained model
Constructing prediction engine
Making predictions

Calibrators
Using calibrators for binary classification
ICalibrator
Calibrator implementations (native,
 isotonic, platt)
Integration with TensorFlow

TensorFlow is an excellent ML framework
One can call it from ML.NET-enabled apps
What extra functionality does it provide?
Other integrations

Testing ML Code
Often ignored, how to test ML code is
 crucially important item for production-
 quality delivery
Performance issues

ML.NET App Design
Going beyond the APIs, exploring what is
 needed to design an ML enabled .NET app
ML.NET role as part of larger app design
Certain important design considerations

ML.NET Internals
ML.NET is written in C# and it is quite
 informative to read and understand the
 source tree

Project
Exploring steps need to add machine
 learning capabilities to an existing
 C#/.NET application using ML.NET

https://github.com/dotnet/machinelearning/tree/master/src
https://github.com/dotnet/machinelearning
https://github.com/dotnet/machinelearning
https://dotnet.microsoft.com/apps/machinelearning-ai/ml-dotnet

One Day Intensive Training Course For Senior Knowledge Professionals 53

Java 22 Runtime Programming
IO, Processes, Serialization, Asynchronous,

Security, Networking, Web Access
After developers learn the Java 22 language they next
must learn about the Java 22 runtime environment and
the APIs it provides. Java and its add-on packages offer
a vast range of APIs and often it can be daunting for
developers new to Java to figure out what goes where.
Initially, to simply get work done for their specific
assignments can be a challenge. This course aims to
overcome this and takes developers already proficient in
the Java 22 language on a walkthrough of common
scenarios – we look at relevant APIs and the runtime
ideas underlying them and help attendees write code
efficiently and become productive as Java devs.

Beneath Java on every implementation is an OS, whose
capabilities are exposed to Java applications via an API.
The Java runtime itself, known as the JVM, adds
additional capabilities. Base class libraries and layered
libraries offer even more functionality. Taken together, a
rich multi-layer of readily available functionality is
provided for application developers to exploit in their
own applications.

The aim of this rapid-paced course is to cover as much
as possible of the fundamental APIs that devs need and
provide them a good grounding in practical API usage.

Contents of One-Day Training Course

Target Audience
Developers wishing to
create libraries and
applications using Java
22’s runtime capabilities.

Prerequisites
Attendees must already
have attended our Java 22
Language course or have
similar Java language
programming experience.

Note: This course does not
cover Java multithreading.
We offer a separate
complete course on this
topic.

Overview of Java Runtime
Documentation and tooling
How everything works together
Overview of module layout
Interaction with the JVM
Tour of all major runtime features

 Garbage Collector
Interacting with the GC
Impact of various approaches
Z Garbage Collector

 java.io
File handling
File and string readers and writers
Buffering
java.util.zip

Serializable
Serializing and deserializing an object
NotSerializableException
Object stream APIs

Managing Processes
Process class represents a process
Creating a process with ProcessBuilderProcessBuilder

Launch mechanisms – e.g. VFORK and
 POSIX_SPAWN
Redirect via ProcessBuilder.Redirect

Asynchronous I/O
Java async I/O design pattern
Streams
Asynchronous channel APIs
JMS – Java Message Service

Rich message exchange framework
Reliable / asynchronous
Point to point vs. pubsub

Utilities
Text handling & regex
Internationalization (e.g. new Unicode 11)
Time / mathematics / etc.

Java And Security
A comprehensive security framework
authentication, authorization, auditing
Java and PKI
Use of cryptographic algorithms

Advanced Security Features
SecurityManager
Keystore
Code security – code signing, bytecode
 verification, avoiding common threats

Java Networking
Socket programming with Java
specifying network addresses
Socket options
Creating UDP and TCP connections

Web Access
HTTP 1.1, HTTP/2 (JEP110) and HTTP/3
URI
SSL/TLS

Reflection
java.lang.Object.getClass()
How to use java.lang.Class
Reflection namespace – java.lang.reflect
 Constructor, Field, Method, Parameter

Additional Libraries
java.instrument and logging
Transactions
Java Management Extensions (JMX)
Java Naming & Directory Interface (JNDI)

http://openjdk.java.net/jeps/110
https://docs.oracle.com/en/java/javase/19/

One Day Intensive Training Course For Senior Knowledge Professionals

Java 22 Multithreading
Concepts, Kernel, Threads, Synchronization,

Concurrent Collections, Debug, Akka, Server Design
[Sample: snippets] This course examines how to use
Java 22 to build sophisticated multithreaded
architectures. When designed correctly, multithreading
can substantially increase application performance and
responsiveness to distributed clients and end-users. The
kernel provides a number of opaque objects that are the
foundation for multithreading – based on this are
constructs for the process, thread & various
synchronization objects – reentrant locks, event,
semaphore, waitable timer and more – each of which
targets different needs. Thread activity, lifetimes, inter-
thread comms and memory usage must be co-ordinated.

Various higher-level design patterns may be used to
route workitems in multithreaded servers. Tools may be
developed to determine which thread is blocked waiting
on which resource, and the state/owner of each resource.
A delegate-based configurable pipeline + a cache are
often appropriate. The optimal server architecture is one
active thread per processor core. A server must
efficiently multiplex many I/O requests over a few
threads – which is precisely the goal of threadpools in
Java 22. This course supplies attendees with a clear
understanding of the concepts underlying multi-
threading, together with experience of their use in Java.

Contents of One-Day Training Course

Target Audience
System architects and
experienced developers
who need to gain an in-
depth understanding of
Java multithreading.

Prerequisites
Attendees must have some
experience of systems-
level programming.

Attendance at our Java 22
Runtime Programming
course or equivalent
experience needed.

Multithreading Concepts
Scheduling vs. synchronization
Parallelism and concurrency
Compute-bound and I/O bound apps
Race conditions, deadlock, starvation,
priority inversion

OS Foundations
Processes & threading in various kernel
Usage counting
Sharing handles among processes

Threads in Java
Java’s threading architecture & lifecycle
The Runnable interface
ThreadLocal – each thread has its own
 copy of the variable / ThreadGroup

Creating Java Threads
OS threads and Java threads
Creating a new thread: java.lang.Thread
Implementing a Runnable
Extending the Thread class
Thread priority and processor affinity

Synchronization
Locks, mutexes (reentrant locks),
 semaphore, events and timers
Waiting (once, many), idea of spin wait
The “Protect data, not code” principle
Atomics with java.util.concurrent.atomic
A synchronized block
Java Collections And Threads

When do we need to protect collections?
Selecting and using thread-safe collections
java.util.concurrent.locks
java.util.concurrent for concurrency

java.util.concurrent.atomic:*
 supports lock-free thread-safe

 programming on single variables
Thread Pool

The thread pool is a runtime-managed
 pools of threads for processing I/O,
 work-items and timer handlers

Debugging with Threads
Querying information about running
 processes/threads and their attributes
Thread tracing/debugging in tooling

Resource Management
Creating a custom resource browser, to
 display which thread is waiting on which
 synchronization resource

Design Issues
Single writer/multiple readers, once-off
 initialization, Dining Philosopher
Converting legacy code to multithreading

Multithreaded Architectures
Pipeline, Producer-Consumer, Work-Crew
 and Master-Slave Models
Create threads on demand vs. elastic pool

Akka – The Actor Model
Moving beyond foundational thread
constructs, explore higher level frameworks
Akka is based on the actor model and is
 highly suited to large scale projects
Working without locks – how?

Multithreaded Project
A complete multithreaded embedded HTTP
web server that uses a thread pool to
efficiently manage very many requests

https://www.clipcode.net/assets/multithreading.java.txt

One Day Intensive Training Course For Senior Knowledge Professionals 55

Technology / Data School

Query
● RDF-OWL-SPARQL
● SQL
● XML
● .NET LINQ, Expression Trees And Rx
● STL using C++

ORM
● .NET EF Core 8 Using C#

Format
● PDF Programming

Repository
● GIT and GitHub

One Day Intensive Training Course For Senior Knowledge Professionals

Fundamentals Of Storage
Disk Hardware, Connectors, OS Storage Subsystems,

File Systems, RAID, Tx, Caching, Hashing, B-Trees
This course provides a comprehensive tour of the
important storage fundamentals that all technologists
need to understand in order to build, provision and
operate modern IT solutions that involve storage (which
of course means all such solutions). There’s a lot more
to storage than the hard disk on a PC or simple APIs
such as fopen() / fwrite() that developers might use. In
this course we explore storage end-to-end and see how
it interacts with remote disks, hypervisors, the cloud
and various in-memory representations. We see how the
distinction between storage, database and memory is
being blurred. We see how system-wide reliability and

performance demands impart on storage. We see how
modern OSes and their powerful storage stacks allow
rich journaling file systems and databases to be built
that deliver a wide variety of enhanced storage features.
We also explore specific technical approaches to
transactioning, caching, hashing and B-Trees.

A good understanding of storage fundamentals along
with clear knowledge of the storage-related technical
options available to choose from helps all involved in
engineering to make the optimum design decisions.

Contents of One-Day Training Course

Target Audience
Developers, devops, IT
professionals, engineering
managers – all of whom
need an understanding of
the core building blocks of
storage platforms.

Prerequisites
Good all-round knowledge
of modern computing
infrastructure at a technical
level.

Storage Concepts
Latency
Throughput
Reliability
“bit-rot” and other issues

Modern Storage for ...
File
Object
XML
SQL
Graph

SCSI – Talking To Storage
Small Computer System Interface (SCSI)
is a comprehensive protocol / command /
interface between controller and disk
Disk hardware and connectors
Traditional disk
SATA / SAS
SSD and Flash
NVMe and PCI Express
RAM disk

Tape, Optical
Managing larger amounts of data
Tape and optical formats used for backup,
transporting and long-term archiving

DAS, NAS, SAN
Directly Attached Storage
Network Attached Storage
Storage Area Network
Storage Subsystem In An OS

Storage and networking are the largest
subsystems inside any OS
Exploring an OS storage architecture

Modern File Systems
Journaling
128-bit sizes
Virtual File Systems And Client File APIs
Detailed look at internals of a modern file
system – ZFS

RAID
Costs and benefits of various RAID types
Stripping
When errors occur in hardware and in
software

Transactioning
Transaction principles
Two phase commit
Hierarchical transaction groups
Savepoints
Resource manager
Enlistment

Caching
Putting data close to where it is used
Cache lifetimes
Keeping data in cache fresh
Caching architecture

Identity And Hashing
How to identify storage objects
Role of hashing algorithms
Importance of hashing for de-duplication
and other aspects of storage

B-Tree
B-Tree is the most important data structure
for storage architectures
Performance characteristics of B-Trees
Variations of B-Tree layout

One Day Intensive Training Course For Senior Knowledge Professionals 57

STL: The C++ Standard Template Library
Algorithms, Containers, Iterators, Functors,
Adaptors, Allocators, Performance, Internals

STL is an amazing masterpiece of software
engineering. In addition to learning about a rich object
collection system, developers will profit from studying
STL deeply as they will learn how to put together their
own modern frameworks to comprehensively tackle
their specific needs.

The goal of this course is to bring C++ developers up to
speed with all aspects of STL programming. We start
with a tour of what STL has to offer and how it builds
on some of the latest ideas in modern C++. We explore
all the technical constructs defined by STL.

Iterators are used to flexibly define sequences of
elements and manage the navigation among elements,
without exposing the internal arrangement of elements.
Algorithms are the operations we wish to perform on
sequence of elements (independently of how those
elements are stored). Containers (both sequence and
associative) are how storage of groups of elements is
managed. Adaptors provide more specialist access to
containers. Allocators are used for memory layout. We
also examine the very interesting STL architecture and
discover how some of its design ideas used internally
may be applied in designing our own class libraries.

Contents of One-Day Training Course

Target Audience
C++ developers who wish
to learn about the power of
STL and see how to use it
aggressively in their own
applications

Prerequisites
Good knowledge of the
fundamentals of C++
programming, especially
templates and memory
management.

STL Overview
Tour of STL capabilities
Generic programming
Visiting with iterators
Generic containers
Container-independent algorithms
Application programming using STL
Highly efficient and flexible solutions

C++ Review
Review of aspects of modern C++ (e.g.
 templates, memory) that STL leverages

Iterators
A specialist pointer to an element
Category
Element type & distance type
Reverse/stream/insertion iterators

Algorithms
Operates on sequences
Passing in sequences using begin-/end-
Template-based functions to perform ops
Review of available algorithms
Functors as algorithm predicates

Sequence Containers
Containers are collections
Ordered collection of elements
deque, list, vector
Random access vs. sequential access

Associative Containers
Elements and their associated keys
map, set, bitset

Adaptors
Adapting a container to a specialist need
e.g. look at stack/[priority|]queue interface

Allocators
Use default allocators at first, expand later
Various strategies for managing blocks of
 memory using <memory> header

STL & Shared Libraries
Issues when passing STL collections across
DLL/.so shared library boundaries
Need for using same binary layout

Deploying STL
Optimizing STL use in your own projects
Container selection – different containers
 have differing performance capabilities
 and differing feature sets
Algorithm selection – being aware of large
 range of algorithms available is important

Custom
Building custom:
- containers
- algorithms
- iterators
- adaptors
- allocators

Design Ideas
Review of architecture of STL
Incorporating ideas from STL into your
 own framework designs

Internals
STL is delivered as a set of header files
Exploring how it is put together
More specialist functionality

Project
Building a C++ project that uses STL

 extensively

One Day Intensive Training Course For Senior Knowledge Professionals

.NET LINQ, Expression Trees And Rx
Lambda/Query Expressions, LINQ-To-Objects, Trees,
Providers, Rx Observ[able|er], Subjects, Operators
.NET’s LINQ (Language INtegrated Query) is an
innovative querying capability built into the .NET
Framework and languages such as C#. Querying plays a
major role in most applications. For .NET and C# to
pay particular attention to how code can query a variety
of data sources (e.g. SQL databases with EF Core, XML
documents, observable streams with Rx, collection
classes, management objects, ..) can be most beneficial.

Once .NET application developers learn the basics of
LINQ they can then explore how to extend it and how
to expose custom data sources as LINQ targets.

Think of .NET expression trees as an AST of a query.
They are used in LINQ and many custom solutions.
When LINQ providers talk to remote data stores,
expression trees are at the heart. Expression trees can
automatically be created by a .NET compiler and also
directly interacted with by application code.

Rx (Reactive extensions) is “an API for asynchronous
programming with observable streams” [link]. It is
based on the observable pattern (one of the GoF
patterns). Rx is available for many languages (e.g.
Angular uses it extensively), this course covers Rx+C#.

Contents of One-Day Training Course

Target Audience
Software engineers
wishing to learn about the
foundation of LINQ,
Expression Trees and Rx.

Prerequisites
Attendees are expected to
be experienced C#/.NET
developers with some
awareness of data
querying, collections and
abstract syntax tree usage.

Overview: LINQ,
Expression Trees and Rx

Introduction to each, how they fit together
and how they might be used in applications
Functional programming ideas

Review of C# Features
Modern features of C# that are of interest
Lambda expressions, anonymous types,
 extension methods, var, flexible object
 initialization, partial classes/methods
Func<> and Action<>

LINQ Concepts
Immediate & deferred execution
Query Syntax vs. Method Syntax
What are operators

Use Query Expressions
Query Expression Syntax
SQL-like format
Typing

Standard Query Operators
Tour System.Linq namespace
Exploring provided operators
Adding custom query operators
Inputs and outputs
Moving to saying what you want
Lambda, delegates and expression trees
IEnumerable<T> vs. IQ ueryable <T>

Designing LINQ Providers
How is the network involved?
How does data flow?
Where, and when, are expressions run?
Creating a custom LINQ Data Provider
Programmatically querying custom data

Expression Trees
Introduction to expression trees
Expression trees and IQueryable<>
Dynamically compiling expression trees
Review of important expression types
System.Linq.Expressions
The LambdaExpression type
Factory methods

Debugging
How to debug LINQ code
Writing your own debug visualizer for
 expression trees

ReactiveX for C#
Observable and Observer
Enumerable vs. observable
Rx operators
Subject
Disposables
How to use Rx within application code

Advanced Rx
Rx and ..
 Handling time / Exceptions
 Threading / Subscriptions
 Notification / Materialization
 Cold vs. hot / Scheduling

Async Streams
Important improvements to async/await
allows precise control of async streams
with rich new features

Custom Rx
Building your own observers, observables
 and operators
Managing subscription lifetimes

https://github.com/dotnet/reactive/tree/master/Rx.NET/Source/src/System.Reactive/Disposables
https://docs.microsoft.com/en-us/dotnet/api/system.linq.expressions?view=netcore-3.0
https://docs.microsoft.com/en-us/dotnet/api/system.linq.iqueryable-1?view=netcore-2.2
https://docs.microsoft.com/en-us/dotnet/api/system.linq.iqueryable-1?view=netcore-3.0
https://docs.microsoft.com/en-us/dotnet/api/system.linq.iqueryable-1?view=netcore-2.2
https://www.clipcode.net/assets/academy/mentoring/gof/index.html
https://www.clipcode.net/assets/academy/mentoring/gof/index.html
http://reactivex.io/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/expression-trees/

One Day Intensive Training Course For Senior Knowledge Professionals 59

RDF, OWL And SPARQL
Ontologies, Standards, Triples, Datatypes, RDF,
RDF Schema, OWL, Entities, SPARQL, Reasoning

This course provides a guided tour of the world of
knowledge representation and reasoning, from an
ontology perspective. We will see that a graph is the
most scalable, extensible and distributed form of
knowledge representation and facilitates knowledge
reasoning to incorporate additional facts.

W3C has defined a layered set of standards related to
defining and querying ontologies. We will discover how
each standard builds on a foundation to add more
ontology-related functionality and together they define
a comprehensive solution to ontology management.

Resources are identified with internationalized URIs
(IRIs). We start with an agreed set of basic datatypes
(number types, strings, URI, dates), then use them to
define simple statements in the form of triples (subject-
predicate-object), then build groups of such statements
into graphs, and then combine multiple graphs into
datasets.

We add a query engine in front of such datasets to make
them accessible to distributed clients. We can define
rules to add more control over ontology interaction. We
support knowledge reasoning via inferencing.

Contents of One-Day Training Course

Target Audience
Software engineers and
knowledge engineers who
wish to learn more about
creating and interrogating
ontologies using the latest
W3C standards

Prerequisites
A software engineering
background with some
experience of creating
semantic models

Ontologies
Representing knowledge
The knowledge graph
Description Logics (DL)
Reasoning about knowledge
Tour of the world of ontologies

Ontology Standards
W3C has been very active in defining a
suite of standards related to ontologies
Review of W3C layered standards

Protégé Tooling
Stanford University has created the
Protégé tool (https://protege.stanford.edu) -
“A free, open-source ontology editor &
framework for building intelligent systems”

XML Datatypes
The common primitives (int, string, date)
for ontologies and the knowledge graph
Value space vs. lexical space
Facets for specialization

Introduction to RDF
Role of Resource Description Framework
Statement: subject, predicate, object
Managing triples

RDF Schema
Extending the RDF vocabulary
Defining classes and their properties
Reification

Introduction to OWL
Web Ontology Language (OWL) expands
the vocabulary for representing knowledge
Tour of OWL capabilities – axioms, etc.
Literals/datatypes/dataranges/expressions

OWL Entities
Named Individual
Class
Datatype
Object Property
Data Property
Annotation Property

SPARQL Introduction
SPARQL is to ontologies what SQL is to a
relational database – a flexible language to
query and update knowledge graphs

Advanced SPARQL
Result formats
Update
Federated queries

Existing Datasets
Exploring available big datasets, e.g.:
- Dbpedia (http://wiki.dbpedia.org/)
- Wikidata (https://www.wikidata.org)

Reasoning & Rules
Inferencing over ontologies
Discovering new relationships
Defining rules using RIF
Ontologies & Machine Learning
Some folks think of ontologies as
 competing with ML – we look at this
 question and how to use them together

Ontology Design
Review of how to create ontologies using
what we have learnt

Project
Designing a large software solution
incorporating ideas explored in this course
r

https://protege.stanford.edu/

One Day Intensive Training Course For Senior Knowledge Professionals

Structured Query Language (SQL)
Relations, SQL Overview, The Table, DML, Joins,

DDL, Stored Procedures, Transactions, ORM
Structured Query Language (SQL) is the very popular
purpose-built query language for relational databases.
A mathematical relation forms the logical underpinning
for a relational table. A table consists of an unordered
set of rows; each row consists of an unordered set of
columns. Columns are named and are associated with a
datatype. Some columns has specific characteristics
(e.g. primary/foreign keys). Indices can be attached to
some constructs which greatly improve performance.

Whether building cloud, enterprise or mobile solutions,
devs should at least consider and often select SQL as

the basis for their data management needs. It offers a
wide gamut of capabilities and is massively supported
across all computing platforms.

There are many SQL products in the marketplace. This
course explores standard SQL. Each database vendor
adds its own nuances to this standard language, but all
support a large core set of SQL functionality, and it is
this core that we cover in this course. After this
foundational course developers will be ready to explore
the product-specific documentation for their selected
SQL engine & selected app programming language.

Contents of One-Day Training Course

Target Audience
Developers who wish to
learn SQL by focusing on
the large set of SQL
features that is common to
modern relational
databases.

Prerequisites
Experienced software
engineers with some data
manipulation background.

No previous SQL
experience is required.

SQL Overview
The mathematical relation
Representing knowledge via tables
Query language for relations
Parameterized queries
Stored procedures

Role of SQL
Tour of SQL in modern database engines,
both client/server & library-based, such as:
- Microsoft SQL Server
- Sqlite
- MySQL
- Oracle

Defining a Table
Datatypes
Primary key
Foreign key
Normalization

Intro to DML
SELECT
INSERT
UPDATE
DELETE

Advanced DML
WHERE
ORDER BY
DISTINCT
Aggregates (AVG, SUM, MIN, MAX)

Joins
Combining statements in a join
Inner join
Left/right join
Full join

DDL
CREATE and ALTER
DROP
TRUNCATE

Stored Procedures
Creating and calling stored procs
Parameters and local variables
Additional programming constructs
(BEGIN/END, TRY-CATCH, etc.)

ACID
Atomicity
Consistency
Isolation
Durability

Transactions
Unit of work
All or none
Begin Tx and commit or rollback

SQL And Security
SQL injection attack
Dangers of dynamically building queries
GRANT and REVOKE
ORM–Object Relational Mapper
Many object-oriented programming
 languages use an ORM to manage SQL
 queries - how do they work?

SQL vs. NoSQL
Contrast SQL and NoSQL approaches to
 data storage and data management
Suitability for different scenarios

Project
Use of SQL as the basis for data in a
 comprehensive enterprise solution

One Day Intensive Training Course For Senior Knowledge Professionals 61

eXtensible Markup Language (XML)
XML InfoSet, XML Serialization, Namespaces, DOM,

XML Schemas (XSD), XPath, XSLT, XML in App Design
XML is well supported on all technology platforms by
many editors, tools and framework vendors. As it has
proven its worth in the field, it has become a highly
desirable feature to leverage in applications. Hence it is
now a mandatory part of the skills set for modern
software developers. The W3C has defined a cohesive
series of XML standards, covering core information
modeling, how data is to be serialized, a Document
Object Model defining a programmatic API, how data is
transformed and many more standards. XML has
becoming the foundation for whole swathes of
functionality in various computing environments.

Document file formats (such as ODF and Office Open
XML) have standardized on XML. Many vertical
industries (e.g. http://startndc.iata.org/ or
http://hropenstandards.org) have defined custom XML
schemas. Data exchange is exploiting it. Data delivery
over the Internet is using it.
There are three reasons you will benefit from attending
this training course. Firstly, you will learn what the
XML data format is and its associated standards.
Secondly, you will see how to integrate it with your
own code. Thirdly, you will explore how XML can help
you with app design.

Contents of One-Day Training Course

Target Audience
This training course
targets component and web
developers who need to
know what XML is, how
to program it and design
support for it into their
applications and web
services

Prerequisites
Understanding of
document and data storage
needs, along with
experience of Internet
programming

XML Overview
XML is a metalanguage for describing
 other data languages
Representing data with markup
Developer resources

The W3C XML Standards
What are in the standards
Layering
Introduction to each standard

The XML Information Set
Abstract description
Information items
Strict rules of XML
XML Serialization Standards

The fundamental XML structure is a tree
Each node in tree has a name, attributes
 & can be a parent of other defined nodes

Namespaces
Avoiding tag ambiguity when using
 multiple XML schemas
Unique identifiers
Namespace aliases

XML Structure
Defining what is permissible in XML
Logical structure of information
Valid & well-formed XML

XML Schemas
Describing metadata using XML
Defining schemas
Type system – simple and complex
Lexical space, value space and facets
Modularization
Schema Usage

W3C XML DOM
A Document Object Model for XML
Programmatic Navigation
Hierarchy of nodes
Fundamental & extended DOM interfaces
Alternative: treating XML content as a
stream - push (SAX) and pull (.NET)

XPath
Identifying sub-sections of the XML tree
XSL pattern matching

XSLT
Extensible Style Language Transforms
Transformations for display and into other
 data descriptions

Additional Standards
XML Base
XPointer / XLink
XML Query
XML & Security
XML-Based Markup Languages
Every industry needs to describe different
 data and hence need a different schema
It is not feasible to have a single complete
 data description

XML in Application Design
How to design for XML
Creating a XML-based data format and
 programmatically loading and saving it

Project
Case study showing the creation of a
 complex XML schema, it use within an
 app for data storage and exchange,
 and web delivery of data to a browser

http://hropenstandards.org/
http://startndc.iata.org/

One Day Intensive Training Course For Senior Knowledge Professionals

.NET Entity Framework Core 8 Using C#
Models, Annotations, Fluent API, Querying, Saving,
Advanced, EF Core+Domain Model, Testing, Project
Handling data is one of the most complex aspects of
any enterprise application development project. (The
fact that Microsoft’s .NET has frequently significantly
changed it data story proves this!). Previous approaches
have not been entirely satisfactory and many devs
thought “There's got to be a better way”. Enter EF Core.
EF Core 8 is a modern ORM that has rapidly evolved
out of code-first Entity Framework 7 for .NET
Framework. The latest EF Core 8 (part of .NET 8)
provides C# 12 app developers with a rich data access
capability, in tune with modern development ideas
(domain models, testing, SQL&NoSQL, agile, ..).

EF Core uses LINQ as its querying technology to great
effect. LINQ is a radically different approach to
querying that integrates object development and data
access in a cohesive language environment.

This course covers the latest release of EF Core. The
goal is to take C# / .NET application developers along a
journey which will end up where they can competently
program against a database (SQL or NoSQL) or other
kinds of data sources from within their .NET
applications.

Contents of One-Day Training Course

Target Audience
C# 12 / .NET 8 application
developers wishing to
create modern apps that
need to access databases
using the best ORM
available for .NET, that is
EF Core 8.

Prerequisites
Practical experience of C#,
some previous database
programming and SQL
knowledge (any database).

All demos and labs will be
using .NET 8, C# 12 and
Visual Studio.

EF Core Overview
Overview of modern data access
A powerful ORM (Object-Relational
 Mapping) for .NET applications
Efficient, configurable, improving rapidly
How EF Core fits in with rest of .NET

Tour Of Features
Use an initial sample app to practically
demonstrate main feature set of EF Core
Role of DbContext, DbSet, DbQuery, ..
Data flows, config
Error handling

Tooling
Development / data environment
Connection string
Distinct SQL RBMS data providers
Non-SQL data providers
Specialist data providers
Additional developer tooling

Models
POCO – Plain Old C# Objects
From these, auto-gen database schema
Conventions / Annotations / Fluent API
OnModelCreating
Ways to influence generated model

Querying
Applying usual querying syntax: filtering,
relationship following, ordering, aggregate
Query types

Saving
SaveChanges / tracking / concurrency
Transactions, cascades, keys
Disconnected entities

LINQ And EF Core 8
Deeper look at query language
Going beyond basics, how to really use
 LINQ with EF Core
Complex queries (e.g. joins)

EF Core and ..
Migrations
Security
Database views
Stored procedures
GIS

EF Core and Domain Model
Place domain model and data model in
 separate assemblies
Data model references domain model
 (not the other way around)
Domain model does not reference EFCore
Prefer use of Fluent API – why?
DDD Bounded Context = DbContext
Repositories as interface in domain model
 (no EF Core) and implementation in data
 model (can be switched out for alternative)

Testing
This arrangement greatly helps testing
Importance of dependency injection
Modern testing approach and EF Core
Testing database queries

Project
Developing an end-to-end layered solution
 consisting of Angular UI, ASP.NET
 REST API, domain model and
 EF Core 8 data model
Looking particularly at last of these

https://docs.microsoft.com/en-us/dotnet/standard/microservices-architecture/microservice-ddd-cqrs-patterns/ddd-oriented-microservice

One Day Intensive Training Course For Senior Knowledge Professionals 63

PDF Programming
PDF for developers, Graphics, Imaging, Text, Fonts,

Forms, Metadata, Security, Navigation, Project
Portable Document Format (PDF) is a standard
representation of pages in a document. It is used for
document interchange between document producers
(word processors, report generators, CAD programs,
specialist editing apps) and document consumers (on-
screen viewers, printers, digital signature validators,
forms engines, etc).
PDF became popular as the native file format for
Adobe Acrobat and has been standardized by ISO,
initially as ISO 32000-1:2008 (same as Adobe PDF 1.7)
& recently ISO published a major update - ISO/PRF
32000-2.

Pretty much every computing device that has an
attached display and/or printer can display/print PDF
files. The vast majority of modern document editing
environments can output to PDF - hence is is an
extremely poplar shared representation of a publication.
This course is aimed at developers who wish to gain a
low-level technical understanding of PDF and how they
can use it programmatically from within their own
applications. This course provides an excellent
foundation for developers who wish to build their own
PDF import/export libraries and those who wish to use
one of the existing libraries available for this purpose.

Contents of One-Day Training Course

Target Audience
Developers wishing to
produce, transform and
consume PDF files from
their own applications.

Prerequisites
Software developers with
experience of creating
document editing apps,
particularly their file
formats.

Knowledge of graphics
programming (e.g.
painter’s algorithm) is
required.

PDF Technical Overview
Describing page representations
Applying ink to a page
Tour of functionality
Relationship between PDF and PostScript

PDF Concepts
Coordinate system
Painter’s algorithm
Imaging model
Color management
Transparency

Document and Page Layout
Overall file structure
How each page is represented
Contents of a page
Common data

Text And Fonts
Typography in PDF
Glyphs
Fonts
Ways to represent text
Text objects

Graphics
PDF supports many 2D diagramming
constructs, from line to Bézier curves to
various graphical shapes
State information
Use of 3D
Path construction

Images
Bitmaps and their use in PDF
Supported imaging formats
Rendering images on the page

Color and Transparency
Precisely specific color requirements
CIE
Masking
Clipping

Forms
Forms options in PDF
Designing forms
Accessing form fields after completion
Changes in forms for ISO/PRF 32000-2

Metadata
Attaching additional metadata to PDF
Metadata formats
Extensibility

Digital Signatures
Signing what uses can see
Digitally signing a PDF file
Verifying a digital signature
Cryptographic options (algorithms etc.)

Navigation
Allowing users to easily navigate to pre-
determined destinations within a document
(hierarchy & thumbnails)
Document outline
Flexible inter-page navigation

Multimedia
Embedding video, audio and 3D in a
document
Formats supported
Enabling media playing

Project
Write a project to programmatically create
a PDF document

https://www.iso.org/standard/63534.html
https://www.iso.org/standard/63534.html

One Day Intensive Training Course For Senior Knowledge Professionals

Git and GitHub
Working Dir/Staging, Local/Remote, Clone, Push,
Pull, Branch/Merge, Monorepo, GitHub Desktop

Source code is by far the most important asset any
software company owns. It is more valuable than
buildings, brand names, computer hardware, furniture
or anything else a software company has. Source code
needs to be valued and treated like the very important
company asset that it is. Hence the need for a robust
source code management system.

Git is the most popular source code management
system; GitHub.com is the most popular Git cloud
hosting solution. Either Git alone or Git and GitHub can
be used to comprehensively manage and protect source.

Even if not using GitHub for their own source, app
developers still need to get familiar with it as most of
today’s popular open source projects are using it and
app developers will invariably need to use these.

This course covers both and helps developers gain
hands-on experience in how to incorporate both into
their development workflow. Many Git-related terms
have entered the developer lexicon – push, pull request,
cloning, forking, promoting, repo – and this course
helps attendees understand each concept and mentally
tie everything together to see how they work in unison.

Contents of One-Day Training Course

Target Audience
Software engineers and
architects wishing to
correctly manage valuable
source trees

Prerequisites
Programming knowledge
and some previous
hands-on experience of
any source control system.

For the GitHub part of the
course, each attendee will
need their own (free)
GitHub login to complete
the lab work.

Distributed Version Control
Using what you might already know
Adding distributed influence
Organizing teams via Git
Strategies for managing source trees

Terminology - push / pull, clone, fork,
 fetch, branching and merging
Lifecycle of a single line of code

Getting Started With Git
Installing and configuration
Simple usage
We explore where source can be stored
 (local and remote)
Promoting from working dir to staging
 and beyond
What happens during a commit

Working Locally
Init vs. clone
File system layout

The .gitignore file
Creating, modifying and deleting locally
Cancel changes (revert)
Logging/history/status

Branching / Merging
Creating and listing branches
Merging a branch
Change tracking / diff / Rebase
Feature branches vs. trunk development

Remote
Remote protocols
Connecting to remote repo servers
Push and pull commands
Fetch command

Command Line Tooling
Porcelain vs. plumbing
Beyond the basics - more complete look at
 advanced command line tools for Git
Managing as part of Toolchain
Git as part of toolchain
Use with other tools
Call via scripting (automated test runs,
linting, Continuous Integration/Continuous
Delivery - CI/CD)
What to do with generated info

Monorepo
Each project need not exist in separate repo
Multiple projects can be placed in a single
 repository – known as a monorepo
Practical ideas for using monorepos

GitHub
Source repositories in the cloud
Public (free hosting) & private (fee-paying)

Organizations and teams
Interacting with open source projects
 (issues, releases, changelog, pull requests)

GitHub Desktop
Enhanced (Electron-based) GUI to
 comprehensively manage Git repositories
Easy to set up and use

Git Internals
The source code for Git itself is an
 interesting read: https://github.com/git/git
What can we learn from exploring it?

Project
Organizing a large source tree using Git
Deciding on project and repo layout

https://github.com/git/git

One Day Intensive Training Course For Senior Knowledge Professionals 65

Technology / Networking School

Protocol
● Fundamentals of TCP/IP Networking
● QUIC And HTTP/3 Protocols

Connection
● Protobuf and gRPC
● REST APIs – Designing, Specifying (OpenAPI)

 and Generating (OpenAPI Generator)
● ASP.NET Core 8 REST API Development

Orchestrator
● Kubenetes

One Day Intensive Training Course For Senior Knowledge Professionals

Fundamentals Of TCP/IP Networking
Layering, Networking Architecture, Addressing,

IPv4&IPv6, TCP, UDP, DNS, DHCP, HTTP, Security
TCP/IP is the dominant networking protocol suite and
all involved in delivering modern technology solutions
need a clear understanding of how it fundamentally
works. Developers, DevOps and system admins, along
with many specialists (such as those involved in
database and security) could all benefit from attending
this course as it will clarify the fundamentals of
networking with the TCP/IP suite.

Networking touches on development, security, network
traffic, identity, messaging, data transfer, resilience,
middleware and lots more.

We examine the entire set of protocols in the TCP/IP
suite. Even though the suite name mentions just two
protocols, it is actually a much larger collection of
protocols, with important protocols above and below
the TCP and IPv4/IPv6 protocols.

In any modern OS, its networking stack is a large
segment of the codebase and exposed API. By
investigating what is actually happening between one
app sending & another app receiving a message (by
examining net traffic using appropriate monitoring
tools), we can expand our understanding significantly.

Contents of One-Day Training Course

Target Audience
Everyone with a technical
background who is
interested in how computer
networks actually work.

Prerequisites
Experience of working on
software projects,
including development,
deployment and ongoing
service provision.

No previous network
programming or
infrastructure experience is
required, though any such
knowledge would be
beneficial.

Layers, Protocols and Devices
Overview of networking participants
Networking big picture
Organization of the Internet
Protocol development process (RFCs)

Use of Wireshark
Eavesdropping on the network
Extremely useful tool for low-level
 monitoring of protocol traffic

TCP/IP Family Of Protocols
Layering of protocols
Distribution of responsibilities
Packet structure (encapsulation etc.)
Data Link and Network Links

How octets are physically communicated
technologies used at data and network
Ethernet

Addressing
Approaches to network addressing
Subnetting
ARP
Addressing for IPv6

IPv4 & IPv6
Protocol exchanges
Packet structures
MTU
Internet Control Message Protocol (ping)

TCP
Enhanced services
Headers
Windowing
SYN packet and triple-handshake
Protocol exchanges

UDP
Comparison with TCP
“Best effort” datagram service
Protocol exchanges

DNS and DHCP
DNS architecture
DNS headers
Record types (e.g. SRV records)
DHCP architecture

Internet Building Blocks
Routing protocols
Border Gateway Protocol (BGP)
QoS
AS

HTTP 1.x & 2
HTTP basic messaging patterns
Using Fiddler to examine HTTP traffic
Message chunking
Multiple concurrent channels in HTTP/2

SMTP, POP and MIME
Email protocols family
Message stores
Representing emails

Security And Networking
Firewalls
NATs
IPSec
SSL/TLS

OS Networking Stacks
Windows
Linux
Exposed C APIs (sockets etc.)
Networking APIs inside managed runtimes

One Day Intensive Training Course For Senior Knowledge Professionals 67

QUIC And HTTP/3 Protocols
Transport/App Protocol, Connection, Packet, Frame,
TLS 1.3, Multiplexing, Flow-Control, Implementation

QUIC and HTTP/3 are respectively the much
anticipated next-generation transport protocol and next
generation application protocol. HTTP/3 runs on top of
QUIC. Both are currently undergoing standardization
through the IETF.

Both protocols are being designed in unison to work
extremely well together to achieve an elevated level of
performance and security. They offer a number of very
interesting new features and continue the work we first
see in HTTP/2 of adding multiplexing for HTTP
connections.

“The QUIC transport protocol incorporates stream
multiplexing and per- stream flow control, similar to
that provided by the HTTP/2 framing layer. By
providing reliability at the stream level and congestion
control across the entire connection, it has the
capability to improve the performance of HTTP
compared to a TCP mapping. QUIC also incorporates
TLS 1.3 at the transport layer, offering comparable
security to running TLS over TCP, with the improved
connection setup latency of TCP Fast Open [link].
At the end of this course, attendees will understand how
both protocols work and why they are important.
 latency.

Contents of One-Day Training Course

Target Audience
Networking professionals
and senior software
engineers who require a
deeper understanding of
these new protocols that
will play a very significant
role in the future of the
web and the Internet

Prerequisites
Programming experience
in any low-level language.
Attendees will develop
server and client-side
implementations of both
protocols as part of the
labs.

Good all-round
networking knowledge;
attendance at our
Fundamentals Of TCP/IP
Networking course or
similar experience.

Next Gen Protocols
What are we trying to achieve?
Can we not reach these goals with TCP
 and HTTP/1.1 or HTTP/2?
What do QUIC and HTTP/3 offer?

QUIC Overview
General tour of how QUIC works
Based on UDP (a foundation that is
 already supported everywhere)
QUIC plays role of TCP in protocol stack
Message flows
Connection set up and tear down
Intro to security
Available QUIC implemenations
Extensions

Connections
Reasons for low-latency connection setup
What impact this has?
Connection migration
Error correction
Packet layout
QUIC Streams & Multiplexing

Unidirectional and bidirectional streams
How multiple streams are multiplexed
 onto a single connection

Flow Control
Connection flow control
Stream flow control

QUIC And Security
Modern TLS 1.3 built into QUIC
Security is not an add-on option
Review of security architecture
Responding to NAT rebinding

Frames
PADDING, RST_STREAM, [CONN|APP] _CLOSE,
MAX_DATA, MAX_STREAM_DATA,
MAX_STREAM_ID, PING, BLOCKED,
STREAM_BLOCKED, STREAM_ID_BLOCKED,
NEW_CONN_ID, RETIRE_CONNECTION_ID,
STOP_SENDING, ACK, PATH_[CHALLENGE|
RESPONSE], NEW_TOKEN, STREAM, CRYPTO

HTTP/3 Overview
Overall architecture
HTTP/3 endpoints
Options for discovery
Types of streams (control, push, reserved)
Available HTTP/3 implementations

HTTP Framing
DATA, HEADER, PRIORITY
Settings
Framing architecture

HTTP Message Exchanges
Message has one HEADERS frame and a
number of DATA frames and optionally a
concluding HEADERS frame
Message flows

Connection Management
Cancellation, Compression, Prioritization
Server Push
Error management
Impact On Application Design

How these new protocols will influence
 application design (esp. multiplexing)

Project
Create simple implementations of QUIC
and HTTP/3 and see how application code
could benefit

https://tools.ietf.org/html/draft-ietf-quic-http-23

One Day Intensive Training Course For Senior Knowledge Professionals

REST APIs – Designing, Specifying (OpenAPI)
and Generating (OpenAPI-Generator)

Design API, Write Spec, Autogen client/server code
A REST API is the most practical way of connecting
clients and servers in a distributed heterogeneous world.

We start by discovering what is involved in creating
high-quality REST APIs and how to best go about
designing them, in a contract-first manner. Later in the
course we also explore advanced API design topics.

Then we need to specify the API. OpenAPI is
essentially a well-written standard for a messaging
schema, describing the messages and their headers and
body contents. “The OpenAPI Initiative (OAI) was

created by a consortium of forward-looking industry
experts who recognize the immense value of
standardizing on how REST APIs are described.”

Once we have written our OpenAPI schema, the final
task is to generate code to produce and consume
messages that comply with that schema. For this, we
use the OpenAPI Generator open source project.
“OpenAPI Generator allows generation of API client
libraries (SDK generation), server stubs, documentation
and configuration automatically given an OpenAPI
Spec”. It supports dozens of languages/frameworks.

Contents of One-Day Training Course

Target Audience
Software architects and
senior developers tasked
with efficiently creating
and/or consuming REST
APIs

Prerequisites
Sound understanding of at
least one client
programming environment
and one server
environment (from the
OpenAPI Generator list of
supported languages)

Some previous experience
of network programming
would be useful.

Need for REST APIs
Representational state transfer
Principles of REST architecture
Reliably connecting distributed pieces of
 functionality

 Review of JSON and YAML
How we represent information on the wire
JavaScript Object Notation (advanced)
“YAML Ain't Markup Language”
What enhancements YAML brings

Tasks To Build REST APIs
Need to consider design of API
Need to specify API
Need to generate client library to call API
Need to integrate client library with UX
Need to generate server stubs to host API
Need to integrate server stubs with DB, etc
Need to comprehensively test everything

Designing a REST API
What to take into consideration
Functionality discoverability
Identifying resources and selecting verbs
Integration with HTTP methods

OpenAPI Overview
OpenAPI Initiative (Linux Foundation)
The OpenAPI specification
 (https://github.com/OAI/OpenAPI-
Specification/tree/master/versions)

OpenAPI Usage
Contract Driven API (create contract first)
Handling paths
Defining components
Creating API documentation

OpenAPI In Detail
Detailed look at important constructs in
 spec file and how best to use them
Boilerplate layout and sections
OpenAPI Generator Overview

A modern open source community API
Generator toolset for building REST APIs
Compliant with OpenAPI Spec v3
 (fork of Swagger Codegen)
A set of useful tools for code generation
 for client libraries and server stubs
e.g.: OpenAPI Generator v4.x supports
 Angular code generation.

OpenAPI Generator Features
Setup and tooling
Integrate with build
Useful command line arguments
List of options and their uses
Exploring OpenAPI Generator source tree

Practical REST API Creation
Security (avoiding code injection)
Testing
Working with CI/CD
Error handling
Documentation generation

Style Guide
How best to structure OpenAPI files
Naming conventions
Preparing for future API version evolution

Project
Building an end-to-end application
 involving all steps in REST API design,
 specification, implementation and usage

https://github.com/OpenAPITools/openapi-generator/releases
https://github.com/OAI/OpenAPI-Specification/tree/master/versions
https://github.com/OAI/OpenAPI-Specification/tree/master/versions
https://github.com/openapitools/openapi-generator#overview
https://github.com/OpenAPITools/openapi-generator
https://www.openapis.org/

One Day Intensive Training Course For Senior Knowledge Professionals 69

ASP.NET Core 8 REST API Development
Foundations, Creating REST APIs, Controllers,

Domain, OpenAPI (Swagger), Testing, Architecture
ASP.NET Core 8 is the modern approach to developing
web UI and REST API applications using .NET 8. This
exciting technology richly supports OpenAPI-based
REST development, test-driven development, domain
models, custom URL routing schemes, flexible viewing
and separation of concerns.

This course covers in-depth the foundations of
ASP.NET Core 8 and how to use it to create REST
APIs. Important: this course does not cover ASP.NET
MVC user interface development (e.g. use of Razor)
though much of what is covered here is needed for that.

ASP.NET Core 8 comes with a range of features to
build REST APIs: both the HTTPS interface and
what is behind it (domain model, database access
via EF Core 8) + enhanced OpenAPI support.

Modern REST API developers use C# 12, .NET 8
and ASP.NET to build server-side implementations,
then use OpenAPI (formerly called Swagger) to
describe an API and tools such as OpenAPI-
Generator to auto-generate client-side stubs (e.g.
for Angular UI in the browser).

Contents of One-Day Training Course

Target Audience
REST API developers
wishing to learn about the
latest approach to creating
REST APIs using .NET 8
technologies.

Prerequisites
Attendees are expected to
be experienced C#
developers with some
understanding of the HTTP
protocol.

Attendance at our
.NET 8 CLR Programming
course or equivalent
experience.

No previous experience of
ASP.NET required, as this
course explores it from the
foundations upwards.

Overview of ASP.NET Core 8
“ASP.NET is an open-source and
 cross-platform framework for building
 modern cloud based internet connected
 applications, such as web apps, IoT apps
 and mobile backends. ” [link]
Goals for ASP.NET
Advantages and challenges
Web UI and Web API unified
 Review Of REST API Pipeline

Dev setup required (Visual Studio 2022)
What components are needed to deliver
 REST solution via ASP.NET
Quick Tour of all of ASP.NET Core 8
Focus in on server-side implementation
Detailed look at HTTP request pipeline

First REST API App
Walkthrough of a simple app introducing
 all the major features
Solution layout
Project template in Visual Studio 2022
 ASP.NET 8 runs on .NET 8

Important Concepts
Attributes (Produces, Route, ..)
Use of async
HTTP methods (POST, GET, ..)
Accessing parameter information
Conventions / Analyzers

.NET Generic Host
Useful for HTTP and non-HTTP traffic
Structuring a host
Integration with IIS and HTTP.sys

Controllers And Actions
Plays coordination role
ControllerBase
ApiController
Action results
Different results for different needs
Parameterizing actions
Formatting results

Domain & Data Models
Domain-driven design
Tour of DDD concepts (e.g. repository)
In ASP.NET context, model is a
 domain model (not a data model)
Domain model define repository, which
 data model implements (e.g. EF Core 8)

Architecture
Designing ASP.NET solutions
Common design problems

OpenAPI (Swagger)
Use of add-on OpenAPI capabilities
 with .NET 8 to create portable
 representation of API and documentation

Security
Web application security
Using ASP.NET application services
Various threats

Testing
Approaches to testing web apps
Unit testing and Mocking
Debugging tools (e.g. Fiddler, Postman)

Project
A demonstration of how to use ASP.NET
 Core for more substantial workloads

https://github.com/aspnet/AspNetCore

One Day Intensive Training Course For Senior Knowledge Professionals

ProtoBuf And gRPC
Architecture, ProtoBuf, .proto file, Generated Code,
Security, Performance, Messaging Design, Project

gRPC (https://grpc.io/) is the world’s leading multi-
language RPC framework and toolkit. Originally
created by Google for their internal large distributed
systems, gRPC is now at the heart of a thriving open
source community with robust implementations for all
major programming languages and runtimes.

We see gRPC as one of a number of ways of performing
inter-app messaging. It is interesting to noted recently
TensorFlow, which started with a gRPC interface, has
added REST API support, whereas ASP.NET, which
started with only allowing apps written with it

to offer a REST API, now also lets them support gRPC
access. gRPC is being used in many industry-leading
solutions (e.g. the critical etcd component that is at the
heart of Kubernetes talks gRPC to the other parts of the
Kubernetes universe).

Software developers creating modern client / edge
applications and cloud-based microservices would be
well advised to consider using gRPC to connect them.
This course aims to equip experienced developers with
what the y need to know in order to quickly implement
gRPC in production-quality code.

Contents of One-Day Training Course

Target Audience
Experienced software
developers who need to
add fast networking
capabilities to the
applications and
microservices them are
developing.

Prerequisites
(https://grpc.io/docs/)
Good knowledge of one of
the programming
languages that support
gRPC – attendees may
select one of these to
complete the lab exercises
and project.
.

How Processes Communicate
.. on same machine or distributed
IPC (interprocess communication) options
Impact of corporate firewalls
gRPC vs. IPC vs. REST API vs. socket -
 why RPC is often[not always] best choice

gRPC Overview
Overview of gRPC architecture
Role of ProtoBuf
.proto file
Service definition

Dev Environment
What is needed on developer workstation
 in order to program against gRPC
Library / tooling setup
Auto-generating ProtoBuf details

ProtoBuf Intro
What are protocol buffers (ProtoBufs)?
Supported data types
Dealing with issues regarding differences
 between programming language data
 types and ProtoBuf data types
Producing and consuming ProtoBufs
Serializing buffers

Advanced ProtoBuf
Binary serialization
Advice for buffer design and optimization
Streams

gRPC Programming
Constructing a service definition
Generating client and server stubs
Programming details for gRPC
Integration with threading and async

Error Handling
Instrumentation and tracing
Dealing with errors at protocol level and
 at application level
Error scenarios and their responses (retry..)

Testing gRPC Apps
CI/CD and gRPC
Unit testing gRPC components
Role of dependency injection
Integration testing

gRPC And Performance
The key selling point of gRPC is its
 efficiency – for high-volume messaging
 between software components, it is the
 best approach in most cases
Scaling to larger number of endpoints

gRPC and Security
Authentication
Encryption
Denial of service

Designing Message Flows
Take time to properly design message flow
Often multiple messages within a flow

gRPC Internals
Let’s travel along with a packet exchange
 over RPC
Layering
HTTP/2 transport

Project
Using gRPC in a larger project – creating
ProtoBuf representations of packets that
needed to be exchanged and implementing
messaging over gRPC

https://grpc.io/docs/
https://github.com/etcd-io/etcd/blob/master/Documentation/dev-guide/api_grpc_gateway.md
https://etcd.io/
https://grpc.io/blog/grpc-on-dotnetcore/
https://grpc.io/blog/grpc-on-dotnetcore/
https://www.tensorflow.org/tfx/serving/api_rest
https://grpc.io/

One Day Intensive Training Course For Senior Knowledge Professionals 71

Kubernetes
How Everything Works Together, etcd, API Server,

Scheduler, Controller, Kubelet, CRI, CNI, CSI, Project
Once you go beyond running a few containers on a
single machine, you need to think about how to manage
multiple nodes and make them work together at scale
and that is where Kubernetes comes in. Kubernetes is
the leading orchestration system for container clusters.

At first glance Kubernetes is confusing, because it
involves multiple components running demanding /
varying workloads on different nodes in a network. It
needs to offer resilience in the face of all kinds of
failure, very tight security, efficiency, timely delivery of
application updates and many more features.

However, after we first review the big picture for
Kubernetes, when we examine each of its components
in turn, we see they each performs a focused task
(storage config, change data, schedule a container, start
a container). Each component on its own is relatively
simple, and so we gradually build up a deeper
understanding of how Kubernetes actually works.

This intensive course brings engineering professionals
who already know about containers and microservices
up to speed with the world’s leading open source
container orchestration platform.

Contents of One-Day Training Course

Target Audience
Developers, devops
personnel and system
administrators wishing to
provision large clusters of
containers using
Kubernetes.

Prerequisites
Attendees to this course
must have already attended
our Microservices and
Containers course or have
similar experience.

Big Picture Concepts
What is a container cluster, a master node,
 a worker node, schedulers, controllers,
 a container, a pod, kubelet, etc.
How everything works together
Setting up a Container Cluster
Set up Kubernetes so that master talks to
 kubelet on each node, which manages a
 set of pods on that node, and each pod
 contains one or more containers

etcd
etcd is a highly reliable distributed
 database engine that optimally stores and
 allows observing of config data
Like what you have in /etc config files
 but managed by daemons (hence name)
RAFT Protocol

API Server
Offers a REST API to remote clients to
 configure and monitor a cluster
Clients could be command-line interface
 (CLI) tools or admin consoles or scripts
Writes settings into etcd
Let’s examine APIs on offer

Kubectl
A CLI that talks to API Server
Main route for devops people to
 directly interact with API Server

Scheduler
Watches etcd for changes to configuration
 (e.g. via API Server) and makes
 scheduling decisions, writes these to etcd
Scheduling algorithms and settings

Controllers
Multiple controller types are supplied to
 manage node lifetimes, replication,
 endpoints and account details
Cloud controllers

Kubelet
Makes a worker node part of the cluster
Watches settings in etcd for this node
When change detected in etcd config,
 makes it so in what runs on worker node
Container Runtime Interface

CRI is an interface between kubelet and
 actual container runtime
Popular options: CRI-o or cri-containerd
Containers are usually run via OCI’s runc

CNI
Container Network Interface (CNI) is a
 spec and implementation for networking
 functionality in the world of containers

CSI
Container Storage Interface (CSI) is a
 plugin architecture for storage volumes

Labels and selectors
Attaching key/value pairs to objects
Selecting many objects based on labels

Kubernetes Source Tree
To build up deeper knowledge, we explore
 the source trees for Kubernetes and
 related projects, such as etcd
 (all written in Go)

Project
Deploying a real world application to a
 Kubernetes cluster

https://kubernetes.io/blog/2019/01/15/container-storage-interface-ga/
https://github.com/containernetworking/cni
https://github.com/containerd/cri
https://github.com/kubernetes-sigs/cri-o
http://etcd.io/

One Day Intensive Training Course For Senior Knowledge Professionals

Technology / UX School

Client UI
● User Interaction Design
● HTML And DOM Using TypeScript
● CSS
● Angular 18 Fundamentals
● Advanced Angular 18
● Angular Material 18
● PWA using Angular 18 Service-Worker
● Angular 18 Internationali[z|s]ation
● NgRx
● Web Components/Angular Elements/Microfrontends

Server UI
● Node.js 22, Express And PUG UI Programming Using TypeScript

Hybrid UI
● Ionic 8

RTC
● WebRTC Using Angular

Graphics
● Web 2D Graphics Programming
● WebGPU And WGSL

Media
● Web Media Programming

Workspace
● Windows Shell Namespace Extensions

One Day Intensive Training Course For Senior Knowledge Professionals 73

Fundamentals Of User Interaction
User Centered Design, Usability Principles, Design

Process, Identifying the User, Tools, Usability Tests
Usability is an intangible software feature - more
noticeable by its absence than its presence in an
application. This course helps you design it into your
products. User interaction design is a branch of software
engineering – and needs to be approached in an
organized manner. We need to get to know the user, to
discover the user interaction requirements, to build the
app, and then to test that we have done it correctly. This
is both similar and different to how we would code up
an algorithm or implement a database schema. Every
workitem on a software dev team’s project plan should
be examined to see if it enhances usability of the app -

if not, it needs to be reconsidered. There is a need to
collect as much information as possible from the user –
via product demonstrations, usability testing, and after
launch, analyzing the helpdesk queries. Just like
advertising, 50% of software features are never used –
you will need to find out which, and more importantly
why – perhaps the unused features are too difficult,
perhaps the user does not know they exist
(inaccessible), or perhaps they are simply not needed.
Designers and developers will benefit from attending
this course by gaining an increasing awareness of the
processes used to create incredible user-friendly apps.

Contents of One-Day Training Course

Target Audience
This course is aimed at
software designers and
senior developers who
need to create highly
intuitive user interfaces

Prerequisites
Experience of
programming graphical
user interfaces is needed
along with an appreciation
of usability issues

User-Centric Design
Placing the user at the center of the
software design process
Every developer needs to think of the user
experience – not just those who directly
create the user interface

Usability Design Principles
Terminology and metaphors
Consistency
Task invocation and navigation
Functionality discovery
Continuous feedback
Controllability
Selection and activation
Validation of user input

Concepts
User – application communication
Norman’s Model
From CLI to GUI to CBI
Command-Based Interface used from
multiple sources (GUI, wizards, macros,
Automation, CBT/Help, undo/redo)

Usability Design Process
Identifying the user
Task analysis
Story-boarding
Prototyping
Usability testing
An iterative cycle

Direct Manipulation
Direct interaction
In-place editing
Drag and drop

The look of the application
Font, color, etc.
Use of certain controls
Layout of forms
Task-centric design
Icons and cursors
Benefits of a “minimalist” interface

Types of GUI
OOUI
MUI
Handling complexity
Handling large data sets

Usability for different apps
Database (transactions, locking, tables)
Graphics (dirty bit, perspective, selection)
Components (object display, activation)
Networking (node selection, time delays)

User Assistance Tools
Help system/online mentoring wizard
Context sensitive computer based training

Error Avoidance
Why errors happen
Engineering user errors out of applications
Users never make errors-only designers do

Usability Testing
The “five minute” user test
Collecting information from users
User interaction engineering
Making it part of the development project
and what internal doc/models are needed.
Usability Engineering Project

Complete walk through of how to design
user interaction for a complex project

One Day Intensive Training Course For Senior Knowledge Professionals

HTML and DOM Using TypeScript
Text, sections, forms, tables, the DOM, events,

the canvas and lots more inside modern browsers
The web platform is undergoing a rapid pace of
innovation and its primary standards, HTML and its
DOM, are central to how modern browsers work. The
HTML markup pre-populates the tree and then the
DOM can be used to dynamically edit the tree’s content.
After a quick review of the fundamentals of HTML and
the DOM, this course explores many of the the new and
expanded capabilities offered by HTML & DOM. These
latest specs are well supported across modern web
browsers from different vendors and offer an increasing
range of rich functionality that significantly improve
over the simple markup apps of the past.

Among the many enhancements explored in this course
are the shadow DOM, the HTML canvas, better table
functionality, improved event handling architecture, the
idea of an HTML application with a manifest, better
navigation and plenty more.

In the past developers using higher level frameworks
were sometimes isolated from directly accessing HTML
and the DOM, but there has been a trend in more recent
frameworks to re-introduce developers to direct low-
level access to the full power of HTML and the DOM -
we will investigate the real benefits of this approach.

Contents of One-Day Training Course

Target Audience
Experienced developers
who already know the
basics of HTML (HEAD,
BODY, P, DIV, etc.) and
now wish to get up to
speed with the latest
standards for markup and
programmatically editing
HTML content.

Prerequisites
For the DOM part of the
course, all demos and lab
exercises will be in
TypeScript, so attendees
need to know that
language.

HTML overview
WHATWG (whatwg.org) and W3C
“Living standard” vs. numbered spec
Central role of HTML’s 1200-page spec
 in standardizing the web platform
Collection of specs
Metadata, elements, attributes, encoding

Tour Of Elements
Exploring common elements, some we are
 familiar with, some new to HTML5
Page lifecycle / Uses for URIs
The execution context(s)
Content models

Resources, URI and IRI
Identifying resources
Internationalization with IRI

DOM Overview
Correspondence between HTML markup
 elements and DOM tree elements (they
 are similar, but not exactly the same)
How to interact with a tree of elements
Options for parsing / serializing DOM
Role of WebIDL in defining web APIs

Sections & Grouping
Sections - body, article, section, aside,
h1..6, hgroup, header, footer, address
Grouping – p, hr, pre, blockquote, ol, ul,
menu, li, dl, dt, fig[ure|caption], main, div

Text
a, em, strong, small, s, cite, q, dfn,
 abbr, ruby, rt, rp, data, time, code,
var, samp, sub/sup, kbd, i/b/u, mark,
bdi,bdo,span,br, wbr

Modern Tables
Evolution of HTML tables - table, caption,
colgroup, col, tbody, thead, tfoot, tr, td, th

Forms
Submitting to the server
form, label, input, button, select, datalist,
optgroup, option, textarea, output, progress,
meter, fieldset, legend

HTML Templates
Chunks of reusable markup
Defining and instantiating

Event Handling
Event bubbling
Defining and using events
Popular DOM events
Event listeners

Shadow DOM
Isolating elements for web components
attachshadow() and shadow root

Specialist HTML
iframe, dialog, summary, ins/del
Session history
Location

HTML Canvas
Drawing context
2D immediate mode graphics
Other graphics and media handling
OffscreenCanvas

HTML Applications
Application Cache and manifest
Offline web applications
Linking and link types
The Markdown DSL

https://html.spec.whatwg.org/multipage/

One Day Intensive Training Course For Senior Knowledge Professionals 75

CSS – Cascading Style Sheets
Handling Styling, Selectors, Descriptions,

Specificity, Priority, Pseudo-, CSS for ..., SCSS
CSS is not a markup language (unlike HTML5) used to
represent content. CSS is not a programming language
(unlike JavaScript/TypeScript), used to dynamically
change content at run time. Rather, CSS is a styling
language used to concisely represent styling
information for web content.

CSS is used to declaratively describe the initial
hierarchical set of styles that are to be applied to HTML
elements which later may be manipulated by
TypeScript/JavaScript code. CSS offers considerable
flexibility in how styles are specified and how they can

be applied to elements. An important consideration is to
maintain the same “look & feel” across multiple pages,
Thus a site-wide “house style” is often defined. Also
CSS allows the same content to be optimally rendered
on output devices with differing capabilities (size,
resolution, interactivity) and suitably for people with
differing interaction needs.

This course looks at the role of CSS in the world of
modern web development, provides a detailed tour of
CSS features and explores how you can best deploy it
for styling your own web solutions.

Contents of One-Day Training Course

Target Audience
All developers wishing to
gain a comprehensive
understanding of the least
known of the three pillars
of web development (the
other two being HTML and
JavaScript/TypeScript).

Prerequisites
Knowledge of HTML is
required along with some
graphics background.

CSS Overview
Growing set of styling standards
Defining CSS rules
Style document layout
Declaration block
Internal CSS using <style>
External CSS using <link> and .css file
Could be used to “render” speech, but
mostly used for visual representations
CSS 1 / CSS 2 / CSS 3 / CSS 4

Evolution of standards (CSS modules)
Expanding set of layered standards
What is [well|less well] supported

Selector
Identifying categories of markup elements
Element type
Id
Class
Element hierarchy

Declaration Blocks
Collection of declarations in blocks
Property and value (separated by colon)
Representing values using custom syntax
 suitable for each value type

Inheritance
Importance of style ancestry
Styling descendants
Pseudo-class/pseudo-element
Additional ways to select elements
Styling after particular actions (e.g. click)

Combining selectors
Importance of selector order
Priority

CSS for Layout
Defining where elements appear on page
Replacement for HTML tables (sometimes)
Multi-columns and flexible layout

CSS for Color
Defining color scheme for elements
Element color
Background
Ways to define color (e.g. gradient)

CSS for Font
Selecting font types for text
Styling such fonts (italics, bold)
Sizing fonts

CSS for Spacing
Margin
Border
Internal text spacing

CSS For Text
Alignment
Paged media
Translations

CSS For Content Handling
Web animation
Transitions
Generated content

SCSS
A CSS pre-processor that simplifies CSS
syntax and extends its capabilities
“allows you to use variables, nested rules,
mixins, inline imports and more” with CSS

Project
How to use CSS in a large enterprise
solution to provide flexible styling

One Day Intensive Training Course For Senior Knowledge Professionals

Angular 18 Fundamentals
Tour, CLI, Building Components, Directives,

Databinding, HTTP Client, Forms, Bootstrapping
Angular 18 is the most advanced web client framework
available for production use. It provides a very solid
foundation for development of modern web applications
and is increasingly being selected by start-ups, cloud
vendors and global enterprises for their large scale
solutions with demanding needs and tight development
time frames.

Angular is a vibrant open source project and is built by
a large team from Google and elsewhere. They work to
further evolve the framework and they regularly add
interesting enhancements. This course covers the latest

Angular 18 that can be used to build web desktop, web
mobile, native desktop, native mobile and even server
applications (as it has plenty of non-UI functionality).

Angular is a big project, best approached in stages by
developers wishing to start building apps. Before this
course app developers should learn TypeScript (Angular
itself is written in TypeScript, as are most Angular
apps). Then app developers should attend this course as
their first contact with Angular, optionally followed by
our Advanced Angular 18 course, which looks in more
detail at some specialist Angular topics.

Contents of One-Day Training Course

Target Audience
Developers seeking to
quickly get up to speed
with the best web
framework in the world.

Prerequisites
Developers experienced
with the TypeScript
language and web
programming in general.

No previous Angular
experience required.

All demos and lab
exercises will be in
TypeScript 5.

Angular Framework Tour
Collection of packages that work together
 to deliver a wonderful web framework
Overview of how it works
Introduction to each major module
Many parts to an Angular app

Angular CLI
Command line interface to creating,
 building, serving and testing Angular apps
Angular CLI automates the creation of a
 good boilerplate source tree for your app
 that you can later enhance
What you might like to customize
 (e.g. versions in package.json)
CLI Prompts

Building Components
Exploring how we build components
Event handling – firing and listening
Input and output properties
Metadata for components

Angular Template Syntax
Enhancing HTML syntax with custom
 directives and expressions
Which HTML concepts not permitted
Interpolation
Expression syntax
Attribute directives
ngModel

Structural Directives
ngFor / ngIf
ngSwitch
Microsyntax
ng-template / ng-container

Databinding in-depth
Event, Property,
Attribute, Class,
Style, Two-Way

HTTP Client
How to use the various HTTP request types
Role of in-memory-web-api for testing
Use of services in Angular app architecture
Asynchronous stream of events (objects)
 delivered to your components (RxJS)

Animation
Transitions
States & Triggers

Advanced Components
Styling for Angular components
Lifecycle hooks
Pipes
Deeper look at how you build services

Introduction to Forms
Template-driven forms
Error handling
Change tracking
Structuring form handling code
Reactive forms

Validation
Validating forms input
Correctly displaying error information
Built-in and custom validators
Role of CSS in reflecting control status

Bootstrapping
How an Angular app bootstraps
Intro to how rendering works
Use of platform-browser

One Day Intensive Training Course For Senior Knowledge Professionals 77

Advanced Angular 18
Routing, Libraries, Rendering, Platforms, DI,

NgModule, Universal, DevKit, Schematics
It is in the more advanced capabilities of Angular that
we see it distancing itself from simpler frameworks and
results in it being more and more selected for large-scale
important projects that needs a stable, powerful
framework as the basis for long-term innovation.

Angular offers a well thought out architecture, its
configurable platforms means alternative rendering
approaches may be supported (e.g. from a web worker),
dependency injection means components can be
swapped in and out over time and a wonderful routing
engine provides browser-side navigation for views.

Developers already familiar with using Angular to build
UI apps will find this advanced course of particular
interest as it comprehensively explores how to leverage
the rich feature set of the Angular Framework to build
more innovative applications that distinguish themselves
from the competition in rendering performance and the
flexibility of what they offer users.

Attendees will also benefit from this course’s coverage
of more specialist Angular topics, such as NgModules,
Angular Universal and Angular Dev Kit (including
Schematics).

Contents of One-Day Training Course

Target Audience
Angular and TypeScript
developers wishing to
explore more deeply how
to leverage the more
advanced capabilities of
the Angular Framework.

Prerequisites
Attendees should have
attended our “Angular 18
Fundamentals” course or
have equivalent
experience.

All demos & labs are in
TypeScript 5.

Angular System Programming
Closer look at low level details of how
 Angular apps actually run
Use of zones in Angular

Dependency Injection
Excellent for testing
Hierarchical DI built into Angular
Provides greater flexibility in how a well
 structured app can evolve into future
Angular Router Fundamentals
Browser-based editing of address bar URI
Setting up routes using the Router Service
Router outlet
Catch-all entry

Advanced Angular Router
State management
Handling routing events
Use of guards

Lazy Loading
For large applications, loading everything
 at startup is costly
How can we postpone loading some
 functionality until/unless it is needed

Advanced Angular CLI
What is a CLI workspace?
In-depth look at workspace layout
ng add
Build tooling
Multiple projects

Building Angular Libraries
ng-packagr
ng g library
Sub-dividing large projects into libraries

NgModule
Detailed look at what NgModules are
and how they are used
entryComponents vs. bootstrap
imports & exports

Platforms & Rendering
Ivy renderer/compilation engine
How Ivy works and its benefits to apps
Customizing rendering
Logging rendering information
Role of platforms

Schematics
Idea behind schematics
Creating for your own projects
Examing sample schematics projects

Angular Language Service
“The Angular Language Service is a way to
 get completions, errors, hints, and
 navigation inside your Angular templates”

Angular Universal
Running Angular on the server
Good for search engines (SEO)
Good for fast first load of page in browser

Angular 18 DevKit
Set of dev tools and libraries for ecosystem
Schematics - “generators that transform an
 existing filesystem” -used by Angular CLI
Core, Build & Architect packages

App Architecture
Structure needed for large Angular apps:
 domain model, REST API client,
 routing, error handling, 18n,
 modularity, security and lots more

One Day Intensive Training Course For Senior Knowledge Professionals

Angular Material 18
Material Design, Angular Material Tour, Navigation,

Layout, Popups, Datatable, Flex Layout, CDK, Project
After developers get up to speed with the fundamentals
of Angular and TypeScript programming, their attention
turns from the basics of creating web UIs to more
substantial concerns – such as the need to create visually
appealing, logically organized and easily navigable
applications that responsively react to the devices used
by end-users.

Such modern web applications need to be competitive in
the marketplace and for this consistent styling, layout
and component architecture is needed – hence the need
for material design (https://material.io) and its implem-

entation for Angular 18, which comes in the form of the
new Angular Components repo (evolution of the
Angular Material repo). Hundreds of millions of users
worldwide see material design everyday when using
Google Search, Gmail, Youtube and Android; hence it
makes sense to adopt it for your own website too.

The three main parts of Angular Components are a well
crafted set of components, the flex layout engine and
CDK (for building your own components). All of these
are covered in this specialist course as we explore how
best to create modern web UIs that look well/work well.

Contents of One-Day Training Course

Target Audience
Developers interested in
efficiently bring material
design to their Angular 18
applications

Prerequisites
Experienced Angular
developers with a flair for
UI design.

Note: This is not an
introductory Angular
course - so attendees must
already be familiar with
the Angular framework.

All demos and labs will be
in TypeScript, so attendees
need to know TypeScript.

Purpose of Material Design
Google’s design language
Style guide++
Principles of material design

Tour of Material Design
“Material Design is a unified system that
combines theory, resources, and tools for
crafting digital experiences.”

Angular Components Overview
Implements material design for Angular
Exploring its capabilities
What it brings to modern UI projects
Review of Angular’s forms architecture

Delivering UI Capabilities
Pagination & navigation
Typography
Layout
Useful role of schematics

Form Controls
Autocomplete, checkbox, input, radio
button, select, slider, slide toggle

Navigation
Menu
Sidenav (creation using schematics)
Toolbar / tooltip

Layout
List, Grid, Card, Tabs
Virtual Scrolling - large lists & fast UI
Drag and Drop

Buttons, Indicators & Icons
Button, button toggle, chips, icons, ripple,
 tabs, stepper, slide-toggle
Progress spinner, progress bar

Popups And Modals
Dialog, Tooltip
Snackbar

Data Table
Table and its data source
Paginator and sort header
Creation using schematics

Tree
Tree root and hierarchical nodes
Creation using schematics
Event handling

Introduction to Flex layout
Building responsive user interfaces
Flexbox usage for various screen sizes
The benefit of a grid and column spans
Responsive API & Media query
Coding custom layout
How flex layout works under the hood

Architecture of CDK
Separate Component Development Kit
 "general building blocks for UI components
 decoupled from the visuals of Material Design"
New foundation for Angular Material, can
also be used separately

Using CDK
GitHub location: components/src/cdk
Creating your own components based on
 CDK for a range of capabilities without
 too much extra development effort
CDK data table

Project
Using Angular Material in a large project to
see how to best utilize its rich capabilities

https://github.com/angular/components/tree/main/src/cdk
https://github.com/angular/components
https://material.io/

One Day Intensive Training Course For Senior Knowledge Professionals 79

PWA using Angular 18 Service-Worker
PWA Ideas, AppShell, Manifest, Service Worker spec,

CLI’s --service-worker, Implementation, Project
Web developers have been enviously glancing over at
native app developers and admiring all the shiny extra
toys they have – the sometimes connected app, instant
app start, app store for discoverability, notifications, etc.
(of course, web developers do not forget the unique
advantages they have – a ubiquitous platform, use of
URLs for deep linking, avoiding version hell, etc.).

With the arrival of Progressive Web Applications
(PWA), now web developers have the best of both
worlds. PWA makes it easy to build web apps that run
in modern browsers and behave like native apps.

A PWA is a web app that uses three key technologies –
the manifest, service workers and optionally the app
shell. The best way to build PWAs is to use Angular 18
& its Service-Worker package. The project source tree
can be created as normal using Angular CLI and then
run this to add PWA support: ng add @angular/pwa

The aim of this course to to bring Angular developers
up to speed with how a PWA works, to review the
underlying spec and then to dive deeply into how to
implement a powerful PWA using Angular’s Service-
Worker package.

Contents of One-Day Training Course

Target Audience
Web developers wishing to
build powerful PWA apps
using Angular and its
Service-Worker package.

Prerequisites
Good experience of
Angular 18 programming.

This is an advanced course
and before attending,
attendees should already
be quite familiar with
Angular 18 and TypeScript
programming.

PWA – What are we
trying to achieve

All three ideas are important:
- progressive
- web
- applications
The idea of a client-side mini-proxy server
 and transient network connections
The fact we gain native app capabilities
 does not mean we lose web app
 capabilities

PWA Technologies
Manifest
Service Worker
AppShell
Review of how these technologies work
Message flows
Service workers are quite distinct from
 web workers – not to be confused

Intro to PWA with Angular
Angular and Progressive Web Apps
What Angular offers to PWA app devs
Exploring the Service-Worker package
Angular CLI and Service-Worker apps

AppShell
An approach to initially offer a minimalist
 UI that can be cached
Gradually add more content
Very fast rendering of first view

Manifest
What’s in a manifest.json file?
Generating default
Start url, scope, display, etc.

Service Workers Spec
Review of W3C Service Workers Spec
– we explore how service workers perform
Main artifacts

Angular CLI Generated Code
Add PWA using: ng add @angular/pwa
What does it do?
Add new packages: ServiceWorker & PWA
angular.json/configurations/serviceWorker
ServiceWorkerModule.register call

ngsw-config.json
assetGroups
InstallMode (prefetch)
UpdateMode
Resources
Working With Service Workers
swUpdate: deciding on an update strategy
swPush: service worker’s push notifications
Other aspects of service worker
 programming and configuration

Tooling
Google’s PWA site
Google LightHouse
Debugging and instrumentation

Internals
The source for Angular’s Service-Worker
 package is well worth studying
We also look at source for
 Angular CLI’s @angular/pwa package

Project
Creating an Angular application that
 builds on the ideas explored in this course
 and that scores 100 in LightHouse

https://github.com/angular/angular-cli/tree/master/packages/angular/pwa
https://github.com/angular/angular/tree/main/packages/service-worker
https://developers.google.com/web/tools/lighthouse/
https://developers.google.com/web/progressive-web-apps/
https://w3c.github.io/ServiceWorker/

One Day Intensive Training Course For Senior Knowledge Professionals

Angular 18 Internationali[z|s]ation
Regional settings ng i18n, i18n Pipes,

ngx-translate, Unicode, CDLR, Country Packs
Do you know the wonderful(ly complex) Japanese
writing system has three kinds of symbols: kanji,
hiragana & katakana. Do you know in Germany street
addresses have the house number at the end rather than
the beginning (so “7 Main Street” is written as
“Hauptstraße 7”). Do you know in Bahrain, the
currency has three subunits rather than two (BD 1.234
rather than $1.23). Even how to open a car door can be
different. Do you know the social rules of formality and
politeness are much more complex in many cultures
compared to English-speaking lands. Do you know that
96% of the world’s population do not live in the USA.

All this shows the world is a big place with fascinating
differences and well worth visiting. The aim of this
course is to help your Angular 18 apps travel well.

Critically important i18n aspects that Angular app
developers need to consider include how to represent
strings (in memory, on-screen and in data files); how to
input characters in the user interface; how to display
numeric, financial and date data according to local
customs; how to manage dialog and other resource
values and how to develop custom tools to help with
localization. This course covers all these and lots more.

Contents of One-Day Training Course

Target Audience
Experienced Angular
developers with an interest
in preparing their Angular
18 apps for international
markets

Prerequisites
This is not an introductory
Angular course - so
attendees must already be
familiar with the Angular
framework.

All demos and labs will be
in TypeScript, so attendees
need to know TypeScript.

No prior
internationalization
experience required.

PLEASE NOTE: the first
half of this course covers
general internationalization
programming and the
second half covers
internationalization with
Angular 18.

Overview
Importance of internationalization (i18n)
 “We sell in your language/buy in our own”
i18n concepts - globalization,
internationalization, localization

Review of how i18n works
Common source tree
Multiple localization assets
Helping the translators

Thinking of internationalization from the
 beginning – not as an afterthought
Externalizing assets we need to change

i18n Tooling
Setting up a suitable i18n dev / test bench
Need to get fully local OS installed (not
just English OS with international strings)
XLF files and xliffmerge
i18n and the modern browser
How different browsers handle regional
 settings and language selection

Tools in the browser (e.g. dev tools)
Languages in use
Google Input Tools For Chrome
https://www.google.com/inputtools/chrome

Unicode
Character set / scripts
Text direction & text layout
Inputting complex languages

CDLR
“The Unicode CLDR (Common Locale
 Data Repository) provides key building
 blocks for software to support the world's
 languages, with..repository of locale data”

Angular’s Built-in i18n tools
https://angular.io/guide/i18n
Overview of Angular and i18n
The new localize package in the main repo
The i18n attribute – translatable strings
ng xi18n

i18n Angular Pipes
i18n and DatePipe, CurrencyPipe,
 DecimalPipe and PercentPipe

Intro to ngx-translate
http://www.ngx-translate.com
This modular library provides:
- A service
- A directive
- A pipe
Good for dynamic and static content

Advanced ngx-translate
Idea of loaders
Review of provided loaders
Comparison with Angular’s built-in i18n
tooling

Country Packs
Often need country specific additions
 (e.g. for local regulations)
Building (lazily loaded) country packs for
 country-specific add-on functionality
Using Angular CLI’s ng g library
Integrating country packs with main app

Project
A larger sample Angular project showing
 the right way and wrong ways to manage
 product development aimed at global
 markets

http://www.ngx-translate.com/
https://angular.io/cli/xi18n
https://github.com/angular/angular/tree/master/packages/localize
https://angular.io/guide/i18n
https://www.google.com/inputtools/chrome
https://www.theepochtimes.com/why-do-the-dutch-open-car-doors-this-odd-way-the-reason-will-have-you-doing-the-same_2995268.html
https://www.theepochtimes.com/why-do-the-dutch-open-car-doors-this-odd-way-the-reason-will-have-you-doing-the-same_2995268.html

One Day Intensive Training Course For Senior Knowledge Professionals 81

NgRx
Reactive + State, State Store, Side Effects, DevTools,

Entity, Schematics, Architecture, Project
We use the term “state” to describe nuggets of data
whose lifetime outlives that of a single call to an event
handler (e.g. auth token, contents of shopping cart,
custom color selection for sidenav). An Angular app is
composed of a hierarchy of components. Sometimes
state that is only used by a single component can be
stored within that component; state shared between
related components (near each other in the hierarchy)
can be passed among them directly. Using services with
dependency injection is also an option; but for more
substantial applications with many components,
managing state needs more attention. Enter NgRx ...

NgRx is a well organized suite of packages to manage
application state in a RxJS observable cache. It is very
popular, because it comprehensively solves the state
management issue that every large Angular app
ultimately will face. The three key participants in NgRx
are actions, state and reducers (which literally reduce an
existing state and an action to a new state). Though it
can be used on the server, in the real world NgRx is
mostly used on the client (on the server, data usually
ends up in a database). In this detailed course we
explore the world of NgRx and see how it can be of real
benefit to larger Angular apps.

Contents of One-Day Training Course

Target Audience
Developers wishing to
manage client-side state in
their Angular apps using
NgRx

Prerequisites
Experienced Angular
developers building larger
applications who need to
more seriously consider
their client-side state
management architecture.

Reactive Meets State
What problem are we trying to solve
The observable pattern and its uses
Parts of RxJS that are of interest to us
Lets look at state within an Angular app
When to use NgRx (and when not to)

Overview of NgRx
Exploring the NgRx Platform
Important packages and their interactions
Getting it installed and running
Adding to development environment

Concepts
State (and the idea of immutability)
Actions (state changes)
Reducers

@nrgx/store Introduction
OnPush change detection strategy
Boilerplate code for NgRx
Creating reducers

Advanced @nrgx/store
State composition
Selectors
ngrx-store-localstorage

Meta-Reducers
Meta actions & meta reducers
Wrapping a reducer with a meta reducer
Parameter to StoreModule.forRoot()

@ngrx/effects
What is an effects model?
Isolating change, making pure components
Feeding actions into state cache
Event sourcing architecture
@Effect() decorator

@ngrx/router-store
Combining Angular Router & @ngrx/store
ROUTER_NAVIGATION
StoreRouterConnectingModule

@ngrx/entity
What is an entity collection?
CRUD operations on entity collections
Uses for type-safe adapters/entity selectors

@ngrx/store-devtools
Redux DevTools
Instrumentation tooling for the store
Instrumentation options

@ngrx/schematics
Idea of schematics
A scaffolding library that integrates NgRx
 with Angular CLI
Available blueprints
Case Study: NgRx & Shopping Cart

NgRx is very often used to build the
 shopping cart feature in eCommerce apps
Let’s see how to do it properly

NgRx Internals
 Tour of NgRx source code
 https://github.com/ngrx/platform
NgRx source is managed as a monorepo
Discover how it all fits together

Architecture Considerations
Exploring the architectural issues that need
to be considered in order to successfully
leverage NgRx rich capabilities in an app

Project
Combining what we have learnt in the
course to use in a larger NgRx project

https://github.com/ngrx/platform
https://chrome.google.com/webstore/detail/redux-devtools/lmhkpmbekcpmknklioeibfkpmmfibljd?hl=en

One Day Intensive Training Course For Senior Knowledge Professionals

Web Components/Angular Elements/Microfrontends
Custom Elements, Shadow DOM, NgElement,

createCustomElement, App Shell, Architecture
Full stack developers have been successfully using
microservices server-side for a few years and now they
would like to apply that architecture client-side, an
approach known as microfrontends. In some ways
microfrontends are similar to microservices: a clear
need to break up a monolith application, allow different
parts of a large app to evolve and be deployed at their
own pace, perhaps using distinct foundational
technologies. In other ways, they are different:
microservices can run separately in data centers on a
(e.g. Kubernetes) container cluster, whereas we wish a
set of microfrontends to run isolated in a web browser

and yet appear to end-users to be a single integrated
interactive application, with some shared capabilities.
In this specialist course we first review W3C Web
Components - a set of standards that allow components
to be produced and consumed by different web
frameworks (or different versions of the same
framework). Then we look at Angular Elements, which
allows the construction of web components using
Angular. Then we explore microfrontends - what are
they, how to best build them using Angular Elements,
how to host them (app shell) & how to design large-
scale web applications using them.

Contents of One-Day Training Course

Target Audience
Experienced Angular
developers working on
large Angular projects who
wish to compose them out
of microfrontends.

Prerequisites
Full stack developers with
good all-round experience
of Angular.

Awareness of role of
containers and
microservices for
server-side development
highly relevant.

Overview
What are we trying to achieve?
Dividing an app into dynamic components
* Standards - W3C Web Components
* Implementation - Angular Elements
* Design approach - Microfrontends

 W3C Custom Elements
Create your own HTML elements
Attribute, properties, events
New CustomElementRegistry
How we can use them for microfrontends

W3C Shadow DOM
Shadow tree and light tree
Angular ViewEncapsulation.ShadowDOM
(note: Native is deprecated)
Support Features: Slots, HTML

Templates/Custom Events
Relevant additional HTML/DOM features
that modern browsers support

Composability in Angular
Angular dynamic components
Lazy loading & extensibility
Specialist use of NgModules

Angular Elements Intro
NgElement, ngBootstrap()
createCustomElement()
Content projection in Elements

Advanced Angular Elements
Build process
Managing element lifecycle / evolution
Loading a library containing elements
Review of Angular Elements’ source tree
Importance of Render3/Ivy

Microfrontend Architecture
What microservices brings to server app
How best to apply idea client-side
Microfrontend = large (somewhat
 contained) slice of interactive app
Critical to make group of them appear as
 as a single integrated app

Building Microfrontends
Structuring microfrontends
Source layout
Expected classes and interfaces
Design patterns

App Shell
Microfrontends have to live within a shell
Custom app shell hosts microfrontends
What capabilities it could offer:
notification – recently used-quick links-app
discovery

Microfrontends and ..
Routing
Internationali[z|s]ation
Security / Styling
Sharing widgets

Browser Containers
Interesting idea: containers in the browser
containers = namespaces + cgroups
How best to bring idea to browser [polyfill]
Hosting microfrontend in browser container

Project
Bringing together everything covered in
 this course, we conclude with a review of
 a substantial project that uses mico-
 frontends, based on Angular Elements

http://www.clipcode.net/content/microservices-and-containers-touring-library.pdf
http://www.clipcode.net/content/angular-elements-internals.html
https://angular.io/api/core/ViewEncapsulation

One Day Intensive Training Course For Senior Knowledge Professionals 83

Node.js 22 HTTPS/Express/PUG Using TypeScript
Web UI app, REST API app, Node HTTPS,

Express, Generator, Routing, PUG, Project
Because of its ease of development, similarity with web
client-side programming, maturity along with its
expanding framework and tooling story, a Node-based
approach to server-side development is very
compelling. Since TypeScript is usually used client-
side, it make sense to also use it server-side.

This course explores using TypeScript to develop
server-side web UI and REST API applications using
the latest technologies based on Node.js 22. It covers a
mix of technologies that together allow developers to
quickly build robust server-wide web solutions.

The Node.js HTTP(S)&HTTP/2 modules are how Node
apps talk to the HTTP protocol family. The Node-based
Express Application Framework is how rich web UI and
web API apps can be built. It exposes powerful routing
and middleware capabilities. The PUG template engine
(the latest version of what used to be called Jade),
transforms an HTML-like template syntax plus supplied
data values into HTML which is sent to the web
browser for rendering. In some ways PUG competes
with Angular on the client – we contrast what they offer
and investigate how to use them together in the same
solution (often a sensible approach).

Contents of One-Day Training Course

Target Audience
Web developers seeking to
build rich web UI and
REST API apps using the
latest Node runtime,
Express application
framework and PUG
template engine.

Prerequisites
Attendance at our Node.js
22 Runtime Programming
Using TypeScript course or
equivalent experience.

All demos and lab
exercises will be in
TypeScript.

Building Web UI apps
Review of server-side and client-side UI
 development options
Role of templating and access to data
Creating compelling user experiences in a
 Node world

REST API Apps
Review of REST API concepts
Designing a REST API using Node
Evolving a REST API
Security issues
Node.js 22 HTTP[S] Modules

HTTP message flows using Node
Use of createServer to create server
server.listen and server.on syntax
HTTP message content – headers, etc.
Error handling considerations
 (error.code and Exxx values)

Introduction to Express
Application framework based on Node
Main components: express(), Application,
 Request, Response and Router
Intro to what Express calls middleware

Express Generator
Recommended file layout for
 Node/Express apps
Express-Generator constructs boilerplate
 code and layout quickly
Reviewing generated content

Express Routing
Converting incoming URLs and query
 syntax to action invocations
Defining and configuring a router

Implementing an API
Testing an API

Express Middleware
Additional custom steps added to
 processing pipeline
Stack of middleware functions
Helpful auxiliary packages such as path,
 morgan and bodyParser

PUG
Template engine based on Node & Express
Intro to PUG Template syntax
Intro to PUG framework - runs on server
 and transforms syntax + data into HTML

PUG Template Syntax
Concise representation of markup
Consumes data to generate contents
Loops and control flow
Useful shorthand for common needs

PUG API Usage
pug.compile[|File|Client|FileClient|
 ClientWithDependenciesTracked]
pug.render and pug.renderFile
Options interface

Angular Client-side UI
Server-side UI vs. Client side
Why server-wide UI is important
 (e.g. efficient access to server-side data)
 even in a world with Angular

Integrating Angular on the client with
 server-side coding

Project
Developing an integrated project that brings
together all the topics covered in the course

One Day Intensive Training Course For Senior Knowledge Professionals

Ionic 8
System Model, Ionic/Core, Ionic/Angular,
CLI, Stencil, JSX, Capacitor, PWA Toolkit

Ionic 8 is a complete re-imagination of how Ionic
works based on W3C Web Component standards, while
retaining most of the existing Ionic API used by apps.

User interface developers have for decades been
creating apps by weaving together their own code with
pre-built blocks of functionality – these are sometimes
called widgets, custom controls or just components.
With Web Components, this approach is now becoming
a reality for the Web Platform also. We can now have,
say, a small Ionic component consumed by a larger
React component hosted by a plain JS application.

Most modern web frameworks are recently adding
significant Web Component support (e.g. Angular
Elements) and with v5 we see this in the Ionic world.

This course brings web developers with little or no
previous Ionic experience up to speed with Ionic 8
programming. We will see how Ionic 8 is a powerful
framework that enables developers use TypeScript and
familiar web technologies.to build apps for mobile
devices. Ionic contains a set of mobile-friendly UI
components, a library to interact with native services,
a CLI and a toolkit for creating progressive web apps.

Contents of One-Day Training Course

Target Audience
Web developers who wish
to build either PWA or
native apps for mobile
devices using the latest
web technologies.

Prerequisites
Experience of web
development, in particular
Angular. During the course
we discuss the relationship
between Ionic v5 and
Angular (with some older
versions of Ionic, use of
Angular was mandatory,
whereas with v5 it is
optional).

No previous Ionic
experience needed – we
start with the Ionic v5
fundamentals.

All demos and labs will be
in TypeScript, so attendees
need to know TypeScript.

W3C Web Components
Ideas behind this W3C set of standards
Custom Elements
Shadow DOM
HTML Templates

Ionic 8 Overview
Developing for mobile – smaller screens,
 use of touch, limited device features
How Ionic delivers a set of capabilities to
 facilitate web developers building cross
 platform mobile apps

Concepts
Major architectural subsystems and how
 they work together.
Building your first Ionic 8 app
The toolchain

Ionic CLI
A command-line interface to generate,
 serve, build and package Ionic apps
Important commands and their options

Ionic 8 Core
Based on Stencil
UI components
Themes
Utils
Controllers
Configuration

Ionic 8 Angular
Optional Angular integration
Injectable controllers
Directives for virtual
Interaction with Angular routing
IonicModule (an NgModule)

Stencil
Ionic Stencil is a compiler that makes
 Web Components
Use of JSX
The idea of a virtual DOM
Async rendering
Data binding

Capacitor
A mobile app will often need from time to
 time to use services of the native OS – we
 see Ionic Capacitor delivers capability
 (Capacitor takes over the role of Cordova)
The Capacitor API and its usage
How it works on different substrates

Ionic PWA Toolkit
Principles of progressive web apps that
Ionic PWA Toolkit implements
Service workers / push notifications
Configuration / routing

Ionic 8 Internals
 Tour of Ionic 8 source code
 https://github.com/ionic-team
Explore how the various projects mesh
 together and can be extended

Architecture Considerations
How to elegantly design mobile apps
Handling differences among device types
Issues to pay attention to

Project
Bringing together all the ideas discussed in
 the course into a larger project to create a
 mobile app that will be competitive in the
 app stores

https://github.com/ionic-team/
https://github.com/ionic-team/ionic-pwa-toolkit
https://capacitor.ionicframework.com/
https://stenciljs.com/
https://github.com/angular/angular/tree/master/packages/elements
https://github.com/angular/angular/tree/master/packages/elements
https://en.wikipedia.org/wiki/Web_Components

One Day Intensive Training Course For Senior Knowledge Professionals 85

WebRTC Using Angular
Protocols, API Tour, Sessions, SDP, PeerConnection,

DataChannel, Media/Codecs, NAT, Security, Ivy, Project
Real time communication (RTC) is intended for person-
to-person live communication. WebRTC is built into
modern standards-compliant web browsers, mobile
devices and IoT devices. WebRTC implements RTC
without needing browser extensions or plug-ins and
browsers supporting it are already widely deployed.
Forms of communication WebRTC supports include
audio, video and data exchange (e.g. app data or docs).

WebRTC is the basis for RTC within many interactive
apps that are widely used. What is less known is that
WebRTC is a programming platform, and apps running

in the browser & on mobile/IoT devices can leverage it.
Developers striving to add unique features to their apps
would be well advised to consider WebRTC, as once an
understanding of how it works has been gained, it is not
that time consuming to program. The results are quite
powerful and much appreciated by users.

This course starts with an introduction to WebRTC, then
looks at the protocols and API standards in detail, then
looks at how to program it using TypeScript, paying
close attention to everthing app developers need to
know, both on the client and the server.

Contents of One-Day Training Course

Target Audience
Experienced Angular web
application developers
who require a deeper
understanding of WebRTC
and how to use it within
their own web
applications.

Prerequisites
All demo code and lab
exercises uses TypeScript,
so web programming
experience using that is
required, as is good all-
round foundational
networking knowledge.

No previous WebRTC
experience required.

Attendees must be
experienced Angular
developers.

WebRTC Intro
What it is trying to achieve - a community,
a set of standard protocols, a set of
standard APIs, a foundation upon which to
build apps and an open source project

Architecture
Major components for audio, video, data
How transport works; role of codecs
Identity and security (e.g. DTLS)
How to use with TypeScript
Foundational IETF Protocols

RTP /SRTP: Realtime Transport Protocol
RTCP/SRTCP: RTP Control Protocol
SDP: Session Description Protocol
SCTP: Stream Control Transmission
Future: QUIC and WebRTC?

W3C Standards
W3C is working on many WebRTC stds
Review of WebRTC 1.0: Real-time
Comms Between Browsers, Media Capture
and Streams and WebRTC's Statistics

Connectivity Establishment
Interactive Connectivity Establishment
How to use ICE/SDP to programmatically
 connect with remote party [JSEP]
Detailed look at RTCPeerConnection
Works from DOM thread, not web worker

Data Channel Programming
Exchanging app data over WebRTC links
RTCDataChannel: creation and use
Using send() from Typescript
Typings already defined in lib.dom.d.ts
 (which Angular CLI adds to tsconfig.json)

MediaStream
MediaStream/MediaStreamTrack interfaces
Codec selection (look at AV1 and OPUS)

WebRTC Media API
Passing track info to remote parties
RTCRtp[Sender|Receiver|Transceiver]
Encoding / transmission / processing

WebRTC on the Server
Role of signaling (custom to server app)
Your server app exposes REST API
MCU, SFU, gateways, ...

WebRTC and STUN/TURN
Issues with some networks (NAT/firewall)
Navigating NATs with WebRTC (STUN)
Relays using TURN (e.g. JANUS)

WebRTC And Security
How to identify/locate participants
Securing comms links (DTLS, secure RTP)
Regulation: comms, GDPR, police, ..

Application Issues
Developer environment setup for WebRTC
Debugging (chrome://webrtc-internals/)
Error handling with WebRTC

Reference Architecture
Review of how “Ivy” works in Angular
Investigating “Ivy” custom renderers
What is needed to add “Ivy” over WebRTC
Reference architecture exploring how UI of
 an Angular client app can be shared
 via WebRTC’s data channel

Project
Attendees will extend above project to add
 shared interactivity+handle user events

https://testrtc.com/webrtc-internals-parameters/
https://janus.conf.meetecho.com/
http://opus-codec.org/
https://aomedia.org/
https://github.com/Microsoft/TypeScript/blob/master/lib/lib.dom.d.ts
https://tools.ietf.org/html/draft-ietf-rtcweb-jsep-26
https://w3c.github.io/webrtc-stats/
http://w3c.github.io/webrtc-pc/
http://w3c.github.io/webrtc-pc/
http://w3c.github.io/webrtc-pc/
http://w3c.github.io/webrtc-pc/
https://www.w3.org/standards/techs/webrtc#w3c_all
http://webrtcbydralex.com/index.php/2018/11/05/quic-is-the-future-of-webrtc-or-is-it/
https://github.com/webrtc
https://developer.mozilla.org/en-US/docs/Web/API/WebRTC_API
https://developer.mozilla.org/en-US/docs/Web/API/WebRTC_API
https://webrtc.org/web-apis/standardization/
https://webrtc.org/web-apis/standardization/
https://tools.ietf.org/wg/rtcweb/
https://webrtc.org/

One Day Intensive Training Course For Senior Knowledge Professionals

Web 2D Graphics Programming
HTML Canvas, SVG, Web Animation, Web Fonts,
Image Element, Conversions, Coordinates, Files

This focused course explores all aspects of 2D graphics
programming on the web. There are many 2D graphics
options available to the modern web app developer; and
they need to know which to choose for different sets of
requirements.

This course covers in detail how to render onscreen &
offscreen in 2D, create visual effects, download/upload
image content, capture and animate visuals and how to
handle fonts. We also look at user input and how to
correctly respond to events (e.g. mouse moves) and how
to handle screen refresh and window resizing.

Specific technologies covered include the HTML
canvas element and its contexts, Canvas 2D
graphical APIs, structured graphics with SVG,
fonts with WOFF2, web animations using CSS
and lots more.

We also investigate 2D graphics programming as part
of larger application development and how to correctly
structure how the graphical code interacts with other
parts of the larger application – an issue often ignored
until it is too late in the development process.

Contents of One-Day Training Course

Target Audience
Experienced web
developers seeking to
programmatically create
2D graphics.

Prerequisites
Some background of
graphical programming is
mandatory, as is web
programming experience.

All demo and lab code
will be using Angular and
TypeScript, so experience
of both of these is needed.

Note: This course covers
2D only – it does not cover
3D graphics on the web.
The W3C is completing a
new 3D standard for the
web called WebGPU.and
we offer a separate
dedicated course on this.

W3C Standards
The W3C offer a number of specs in the
 area of 2D graphics
Web developers have plenty of options
 but need to choose carefully depending
 on requirements
Tour of what is available
Introduction to each programming model

HTML Canvas Context
The <canvas> html element
Where a canvas can be contained and what
it itself can contain
Canvas attributes (width, height, ..)
The idea of a rendering context
CanvasRenderingContext2D

Canvas Primitives
Graphical primitives: draw line, point, rect
Styles and strokes
Transform, scale, rotate, translate
Composing, path, text handling

Canvas Advanced
Offscreen bitmaps
HtmlCanvasElement.OffscreenCanvas

Programmatically extracting canvas data
 using toBlob and toDataURL
ImageBitmapRenderingContext

HTML Image
Images and the rest of a HTML page
HTMLImageElement: src, & srcset
JPEG and PNG formats
ALT and accessibility
Handling images on a web page
Interacting with images via advanced CSS

SVG Intro
Scalable Vector Graphics is just that
XML-based
Unlike canvas (no file format), SVG is
 retained graphics with stream presentation
SVGImageElement
SVG in standalone file / HTML embedded
Drawing primitives and coordinate system

SVG Advanced
Styling with style attributes
Fills, strokes, effects, widths
Paths and line segments
Filtering
Advanced effects

HTML Web Animation
Relationship to CSS Transitions,
 CSS Animations and SVG
Configuring animations
Keyframes
Timelines

Angular’s Web Animation
Use of CSS animatable properties
Enabling Angular’s animation package
Transitions and timing in TypeScript
Triggers
Web Open Font Format (WOFF)
Typography on the web
WOFF - W3C spec to represent fonts
https://fonts.google.com/

Project
Building a larger project that integrates all
 of the 2D graphics programming
 capabilities explored in this course

https://fonts.google.com/
https://w3c.github.io/woff/woff2/
https://html.spec.whatwg.org/multipage/canvas.html
https://clipcode.net/assets/academy/live/us6.pdf
https://www.w3.org/community/gpu/

One Day Intensive Training Course For Senior Knowledge Professionals 87

WebGPU And WGSL
Modern 3D on the web; Spec; Adapters/Devices,
Buffers, Textures, Layouts, Commands, Pipelines

WebGPU is the rapidly maturing next-generation 3D
specification for the standard web platform. WebGPU
has been created by the W3C’s GPU For the Web
Community Group with the active participation of all
major browser vendors – Google, Mozilla, Microsoft
and Apple. Most modern client devices (including
modern mobile devices) now have some form of 3D
hardware and correctly exposing this to web apps in a
secure and high-performant way is the goal. WebGPU
works the way modern graphics is intended to be
programmed – with a Web IDL-defined API running on
the CPU and a shader running directly on the GPU.

Shaders are written using the brand new WGSL
(WebGPU Shader Language). WebGPU is suitable for
both graphics- and compute-workloads. A significant
subset of the graphics functionality of modern GPUs is
also of great interest for non-graphics (e.g. machine
learning) programming (e.g. heavy-duty matrix
multiplication). The intent of this code-intensive course
is to bring already experienced web application
developers up to speed with all things WebGPU and
have them create their own web applications using
WebGPU that lerverages the available underlying 3D
hardware as much as possible.

Contents of One-Day Training Course

Target Audience
Web application
developers and 3D
framework developers
seeking to leverage the
latest 3D technology on
the standard web.

Prerequisites
Developers experienced
with web programming
and 3D graphics.

Sample code and lab
exercises will be in
TypeScript, so knowledge
of this language is
required.

Review of WebGPU Standard
What does it offer: the most advanced
 compute and 3D rendering pipeline
Clearly focused on securely exposing
 modern graphics hardware to web apps
What does it not cover: shading, AR/VR,
 2D, audio, input/touch:see other specs
WebGPU API Technical Tour

Command Buffers / GPU buffers
Pipelines and shaders
Devices and adapters
Textures / resources / Rendering

GPUAdapter and GPUDevice
navigator.gpu (worker / main thread)
GPUAdapter (the GPU hardware)
Access via call to gpu.requestAdapter
Config: GPURequestAdapterOptions
(power setting for now, future:expandable)
GPUDevice: context to interact with GPU
Access via adapter.requestDevice
May be multiple “devices” per adapter
Has “create” function for all constructs

Buffer
Managed blocks of memory
createBuffer[|Mapped|MappedAsync]
Mapped means accessible as ArrayBuffer
GPUBufferDescriptor (size + usage)
Usage flags – e.g. map_read, copy_dst

Textures
Create textures using createTexture
GPUTextureDescriptor
Create views: GPUTexture.createView
Review of texture formats

Samplers
Role of samplers
createSampler
GPUSamplerDescriptor
Addressing modes / filters

Layout
“A GPUBindGroupLayout defines the
interface between a set of resources bound
in a GPUBindGroup and their accessibility
in shader stages.“ [link]
createBindGroup[|Layout]
GPUBindGroup[|Layout]Descriptor
createPipelineLayout
GPUPipelineLayoutDescriptor

ShaderModule & Pipeline
Shaders & WebGPU
createShaderModule
GPUShaderModuleDescriptor
create[Compute|Render]Pipeline
GPU[Compute|
Render]PipelineDescriptor
WGSL-WebGPU Shader Language
Close relationship to SPIR-V
Suitable for many targets
Will be universally supported
WGSL data types and syntax

Encoders
createCommandEncoder
GPUCommandEncoderDescriptor
createRenderBundleEncoder
GPURenderBundleEncoderDescriptor

Development with WebGPU
Exploring development issues when
 creating web applications using WebGPU
App architecture suggestions

https://gpuweb.github.io/gpuweb/wgsl.html
https://gpuweb.github.io/gpuweb/#bind-group-layout
https://gpuweb.github.io/gpuweb/wgsl.html
https://www.w3.org/community/gpu/
https://www.w3.org/community/gpu/
https://gpuweb.github.io/gpuweb/
https://gpuweb.github.io/gpuweb/

One Day Intensive Training Course For Senior Knowledge Professionals

Web Media Programming
Video/audio in the web browser, Media Stream,

Web Audio API, Audio Graph, Nodes, Codecs, Project
A modern user experience requires content in a
multitude of formats, including audio and video. As
measured by bandwidth, audiovisual media content is
the most popular type of content on the web. Media
plays a very important when showing products at trade
shows, at sales presentations, use of a deployed product,
training, support and more. Web application developers
need a clear understanding of how media on the web
works, how to program against the exposed media APIs,
how to choose codecs and how to incorporate media
functionality as one (important) part of a larger user-
facing web application.

The goal of this wide-ranging course is to help
experience d web application developers become web
media programmers. Media functionality can in added
to new & existing web applications in a number of way,
often with a surprisingly small amount of code (the hard
work has already been done inside the browser itself).

This course also covers some of the more recent
additions to web media programming, such as the new
Web Audio spec, the AV1 codec, and the Media
Recorder API; along with the recent evolution of the
existing web media specs.

Contents of One-Day Training Course

Target Audience
Web application
developers who wish to
quickly add rich media
capabilities to their
existing web applications.

Prerequisites
Experienced web
application developers
with at least a high-level
understanding of media
concepts from a
programming viewpoint.

All sample code will be in
TypeScript, so attendees
need to know how to
program in that language.

Web Media Ecosystem
Overview of media on the web -
 web servers, web browsers, proxies
Importance of CDNs
Media and .. RTC, apps, offline, ++

Protocols for Streaming
How server can send media to browser
Overview of protocols – RTSP, RTMP,
 RTP/RTCP and more
Security and media

HTML Element For Media
HTML <video> tag and attributes
HTML <audio> tag and attributes
 (autoplay, loop, muted, preload, ..)
HTML[Video|Audio]Element
and their parent, HTMLMediaElement
MIME types for media

MediaStream
How media streams work in the browser
How tracks work
MediaStream interface
MediaStreamTrack interface

Capture
Capturing the user’s media devices
 (with permission)
The getUserMedia() call
Detailed configuration options

Media Recording API
The MediaRecorder object
The dataavailable event
How to programmatically record
 audiovisual media streams

Web Audio Overview
Purpose and features of Web Audio
A very comprehensive audio architecture
AudioContext
Channels
What is an audio graph?
Use of nodes for source/filter/compression

Advanced Web Audio
Context options
Spatial (PannerNode for 3D positioning)
Audio worklets
Handling the ended event
Splitting and merging
Audio generation

Offline Web Audio
OfflineAudioContext and audio buffers
Audio in the background

Codecs
Web application developers are unlikely to
 write their own codec for production use
 (maybe do it for curiosity) - unless huge
 effort invested, custom code will not be
 competitive with mainstream options
However, web devs do need high level
 understanding of codecs usage and choice
We focus on AV1 video codec and OPUS
 audio codec, often used together

Project
We create a larger web project with audio
 and video functionality as one part of a
 multifaceted experience and investigate
 how the interaction between the media &
 non-media sides can best be structured

https://www.opus-codec.org/
https://aomedia.org/

One Day Intensive Training Course For Senior Knowledge Professionals 89

Windows Shell Namespace Extensions
Extend Windows Explorer with IShellFolder2,

IEnumIDList, IContextMenu3, IDataObject
On the Windows Desktop, shell extensions enable
independent software vendors to extend the Windows
Shell and its namespace with their own functionality.
The Windows shell namespace is an extensible
hierarchical collection of naming and other info related
to directories, files, printers and networks. The Windows
Shell, including the Desktop, File Explorer and the
common file open/save dialogs used by most apps,
provides extensible graphical browsers / editors for the
shell namespace. All users of Windows are familiar with
the File Explorer tool, which lets them browse the
content of the hard disk/LAN/Control Panel.

There are a number of custom sources of hierarchical
data that would nicely extend the “system” namespace.
By programmatically extending File Explorer we may
provide integrated browsing capabilities for these.

Shell namespace extensions are an ideal solution where
there is a requirement to list items and attributes in a
hierarchical manner, or when data files should be
managed on a medium other than file systems (e.g. in a
database, cloud backup or on remote devices). Other
forms of shell extensions provide access to extended
functionality such as context menus or property pages.

Contents of One-Day Training Course

Target Audience
This training course
targets experienced C++
and COM developers who
want to create shell
namespace extensions.

Prerequisites
Detailed experience of
C++ and COM
development.

(Note: Shell extensions
should not be written
in .NET).

Shell Namespace
A PC’s rooted shell namespace is a
 hierarchical collection of:
 • System components such as file
 systems, printers, the control panel
 • Optional system extensions
 • Third-party namespace extensions

COM DLL Refresher
Quick review and comparison of how to
 create COM DLLs in C++ using a
 variety of techniques

Explorer &
Common File Dialogs

System tools for browsing the shell
namespace. Writing your own browsers

Architecture
Examination of how a shell namespace
extension may be structured. Registry
settings. Creating a simple non-foldering
example. The IShellFolder2 interface

Foldering
Develop single level foldering example
Item ID Lists & the IEnumIDList interface
Cloning and non-cloning varieties of
 multi-level foldering / Node providers
Important registry settings

GUI
Extending Explorer’s toolbar, menubar
and status bar / IExtractIcon
Examination of how a shell namespace
 extension should be structured
Develop single level foldering example
Item ID Lists & the IEnumIDList interface
 multi-level foldering

Data Transfer
How data transfer works
The IDataObject, IDropSource
 and IDropTarget interfaces

Data Flow
The crux of the problem is how to enable
data to flow to all parts of the code in a
namespace extension which requires it -
 • IEnumIDList for foldering
 • IDataObject for drag & drop and for
 the common file dialogs

Emulating File Systems
To a certain extent, though not fully, a
 namespace extension may emulate a file
 system
We examine what does and does not work
Importance of SFGAO_FILESYSTEM attr
Example of editing files on a remote FTP
 server
Special requirements for Microsoft Office
 file dialogs

Other Types of Shell
Extensions

Context menu handler
 • Drag and Drop Handler
 • Icon Handler
 • Property Sheet
Designing a custom context menu handler

Project
Full sample project showing how to create
 all parts of a custom Windows Shell
 namespace extension;
Architecture deep dive

https://docs.microsoft.com/en-us/windows/desktop/shell/shell-and-managed-code
https://docs.microsoft.com/en-us/windows/desktop/shell/shell-and-managed-code
https://docs.microsoft.com/en-us/windows/desktop/shell/shell-entry

One Day Intensive Training Course For Senior Knowledge Professionals

Operations / DevOps

Toolchain
● GIT
● TypeScript/Node/Angular Toolchain
● C/C++ Toolchain

Process
● Agile Development Process

One Day Intensive Training Course For Senior Knowledge Professionals 91

C/C++ Toolchain
Understand, Organize, Build, Write, Document, Test,
Optimize, Verify, Debug, Package, Explore, Deploy

Lots of things have to happen correctly in order to
efficiently transform source code on developers’
computers into commercial digital products in use by
customers around the world.

After writing the source, the code has to be built, unit
tested, documented for developers, stored in
repositories, optimized, debugged, the performance
monitored, the source style has to be verified, libraries
and components packaged & applications deployed.
For C/C++ developers, a toolchain is needed with
appropriate tools for each of these tasks.

The C/C++ toolchain often gets less attention than the
languages themselves or high-profile libraries (such as
STL) but it is vital for highly productive developers to
have a deep understanding of the C/C++ toolchain and
what it can offer. As projects get larger and there is
pressure to deliver updates in shorter time frames but
with higher quality expectations, successfully
leveraging the C/C++ toolchain and all its rich
capabilities makes all the difference.

This course explores a range of useful developer tools
that when used together achieves just that.

Contents of One-Day Training Course

Target Audience
Software engineers who
wish to more fully explore
the toolchain options
available for C/C++
projects

Prerequisites
Experience of C and/or
C++ programming.

At least some experience
of the C/C++ toolchain.

Tour of C/C++ Toolchain
Range of tools needs for high-productivity
high-quality C/C++ programming

Intro to CMake
CMake is the popular cross-platform
 C/C++ build system
Relationship to native build systems
Defining the build process with CMake
Handling the build & source directory tree

VIM
Options for editing code across platforms
General use of VIM
VIM for C/C++ source editing

Intro to Unit Testing
Benefits of unit tests & overview
Designing tests and automatic evaluation
Intro to Google C++ Testing Framework

Advanced Unit Testing
More detailed look at Google C++ Testing
 Framework and how it can be
successfully
 used in large C/C++ projects
Mocking, code coverage, performance

Code Documentation
Doxygen auto-generating documentation
Professional finish

Lint, etc.
Making sure code complies with styling
 and other requirements
Use of lint and other specialist tools

Larger Source Trees
Organizing large C/C++ source trees
Header files, libs, main

C/C++ Compilers
The three major compilation toolkits are
 GCC, LLVM and Visual C++ compiler
 plus there are many smaller toolkits

LLVM
Tour of LLVM project
CLang
Optimizer
Standard library
Language Service for C/C++

Using LLVM to build C/C++ code
Command-line options
Compilation passes

Debugging
Native debugger
Extracting run time information
Symbol management

Package Management
Unlike other languages, C/C++ does not
have popular package management systems
(e.g. no C/C++ equivalent of npm or nuget)
We look at what are the packaging options
available to C/C++ apps (e.g. chocolatey)

Deployment
Approaches to packaging C/C++ apps for
different platforms
Deciding where & how to place assets

Real-world Toolchain Usage
Exploring the toolchain setup for a large
open-source C/C++ project

Project
Correctly setting up toolchain usage for our
own enterprise projects

One Day Intensive Training Course For Senior Knowledge Professionals

TypeScript/Node/Angular Toolchain
Understand, Organize, Build, Write, Document, Test,
Optimize, Verify, Debug, Package, Explore, Deploy

Lots of things have to happen correctly in order to
efficiently transform source code on developers’
computers into commercial digital products in use by
customers around the world.

After writing the source, the code has to be transpiled,
unit tested, documented for developers, stored in
repositories, optimized, debugged, the performance
monitored, the source style has to be verified, libraries
and components packaged, minified & applications
deployed. For TypeScript developers, a toolchain is
needed with appropriate tools for each of these tasks.

The TypeScript/Node/Angular toolchain often gets less
attention than the language/runtimes themselves but it is
vital for highly productive developers to have a deep
understanding of the toolchain and what it can offer. As
projects get larger and there is pressure to deliver
updates in shorter time frames but with higher quality
expectations, successfully leveraging the
TypeScript/Node/Angular toolchain and all its rich
capabilities makes all the difference.

This course explores a range of useful developer tools
that when used together achieves just that.

Contents of One-Day Training Course

Target Audience
Software engineers who
wish to more fully explore
the toolchain options
available for TypeScript
projects for Node and/or
Angular.

Prerequisites
Experience of TypeScript
programming for Node
and/or Angular.

Toolchain Tour
Range of tools needs for high-productivity
 high-quality TypeScript/Node/Angular
 programming
Node’s Inspector Protocol

TSC – TypeScript Transpiler
Tsc and its options
More advanced uses for configuration file
TypeScript Language Service

Written in TypeScript, an external process
 supplying a range of language services
How to call from non-TypeScript clients
Navigating your TypeScript AST in code

Visual Studio Code
Code editor for various languages
Use of Visual Studio Code for TypeScript
 programming, both Node and Angular
TypeDoc Code Documentation
TypeDoc auto-generating documentation
Professional finish

Eslint / TSLint
These tools are used to make sure code
 complies with styling/maintainability

Angular Package Format
The Angular Package Format is a well-
specified layout used for Angular packages
Third-party libraries should follow layout

ng-packagr
Role of ng-packagr in the build pipeline
Extending Angular with libraries

Angular Augury
In-depth debugging of Angular content
Chrome integration

ts-node
Node-based execution environment for
 TypeScript code

Gulp.ts
Gulp is a very popular task runner
We explore how to write gulp files in
 TypeScript (requires ts-node)
Defining the build process using gulp.ts
Handling the build & source directory tree

WebPack
Role of module bundler
Dependency graph and bundles

NPM & Yarn
Creating packages using Node Package
 manager (NPM) and Yarn
Publishing to NPM
Adding extra features to package (e.g. CI)

Jasmine & Karma
What to test; Test syntax in Jasmine
Karma is an excellent test runner
Executing tests using karma; config.js

Real-world Toolchain Usage
Exploring the toolchain setup for the main
 Angular project itself – a very large open
 source TypeScript that is widely deployed

Project
Correctly setting up toolchain usage for
 our own enterprise projects

http://karma-runner.github.io/latest/index.html
https://jasmine.github.io/
https://chrome.google.com/webstore/detail/augury/elgalmkoelokbchhkhacckoklkejnhcd
https://angular.io/guide/creating-libraries
https://angular.io/guide/angular-package-format

One Day Intensive Training Course For Senior Knowledge Professionals 93

Agile Software Development
Methodology, Values, Principles, User Stories, Pairing,

Individual/Team Dynamics, Test First, Refactoring
Agile software development is a highly productive
strategy for organizing project teams. It allows software
to be quickly written for today’s needs and that can
easily evolve to keep up with an every-changing
business environment. It exploits the best of individual
and team creative efforts. Agile shuns the heavy
“ceremony” of documentation-rich rigid software
development processes; and instead advocates a code-
centric approach with just enough documentation to
genuinely satisfy all stakeholders’ needs. This approach
is more satisfying for developers and is more finely
aligned with customers’ true requirements. It results in

much richer contributions from all project participants.
It advocates short iterations that fulfills the “release
early and release often” aspiration. Teams are based on
a flat organizational structure with a high-degree of
face-to-face communication with a “product owner”. It
treats the software development business as an iterative
subscription model, rather than a once-off event. It is a
simpler approach to writing software – and easier for a
team to use. In today’s highly competitive environment,
whichever software team can write quality code fastest
wins. This course is ideally suited to dev teams making
the agile move to gain competitive advantage.

Contents of One-Day Training Course

Target Audience
All members of software
project teams – managers,
architects & programmers
- and the product owner.

Prerequisites
Good understanding of
software development
issues

Significant project
experience (either as a
specifier or an
implementer) .

Efficient Light Methodology
Current state of play in s/w projects
Need for new approach to programming
Families of agile methodologies and
 selecting best techniques from each
“An ecosystem that ships software”

Values
Individuals and interactions over
 processes and tools
Working software over
 comprehensive documentation
Custom collaboration over
 contract negotiation
Responding to change over
 following a plan

Principles
Satisfying customers, welcoming changes,
delivering working software, work
together, projects by motivated individuals,
face-to-face communications, progress
measured by running code, sustainable
development, quality matters, simplicity,
self-organizing teams, reflection
Individual & Team Dynamics
High communication levels
Shared knowledge spaces
Benefits of higher-skilled developers
Handling a creative team
Collaborative & competitive

Design Documentation
Doc strategy – succinct yet sufficient
Documentation for all project stakeholders
Useful templates for project documents

Agile Projects
Agile project management
Iterations and releases
Requirements via User Stories
What is a user story and how to create one?
Certain number completed each iteration

Design
Architecture with a little ‘a’
UML as a sketch
Design today for today; refactor tomorrow

Test-First
Written by programmers (unit tests) &
customers (acceptance tests)
Putting the concept into practice

Pair Programming
“A driver and a navigator” (think rally car
racing) - not “a driver and a passenger”
Duties of the navigator
Continuous code review

Refactoring
What happens when software matures?
“Improve the design after the software has
been written”
Business Issues
Fixed price/fixed-scope contracts,
responsibilities, outsourcing, etc.

Tools
Continuous Integration/Delivery tooling
Unit Test tools
Refactoring tools

Sample Project
Exploration of the use of agile processes in
a case study development project

One Day Intensive Training Course For Senior Knowledge Professionals

Operations / Identity
● Fundamentals of Security
● Angular Security and Authentication
● GDPR & CCPA – A Developer’s Viewpoint

One Day Intensive Training Course For Senior Knowledge Professionals 95

Fundamentals Of Security
Security Concepts, Crypto, Certs, Identity, Trust,
Attack Patterns, ISO2700x, Reviews, Processes

The entire software user base - specifiers, management,
users, developers, administrators – all demand security
and all have a role in delivering it. The goal of this
course is to teach participants a common core set of
fundamentals that is the first step in achieving this.
Security should be treated as part of the expected skill
set of every software professional. They need a
fundamental understanding of security issues, before
considering how to address them in the apps they
develop and deploy (or better, as an integral part of the
design). Security considerations must be part of
software decision making, though they should not

overwhelm it. Most software pros already have some
awareness of security issues – this course builds on this
basic knowledge and ensures the entire dev and
infrastructure teams have a heightened and consistent
appreciation of security concepts, along with a deep
understanding of the core security standards.

This course focuses on the fundamental concepts and
standards behind security. It is independent of any
operating system or software environments Those
attending will be well placed afterwards to think about
optimum implementation strategies for their platforms.

Contents of One-Day Training Course

Target Audience
Software developers and
IT. professionals who need
a good grounding in all the
important security
concepts

Prerequisites
Experience of working on
software projects,
including development,
deployment and ongoing
service provision.

No previous security
programming or
infrastructure experience is
required, though any such
knowledge would be
beneficial.

Security Services
Message integrity
Authentication
Non-repudiation
Proof of submission/delivery
Confidentiality
Privacy
Anonymity

Security Concepts
Network authentication, authorization,
auditing, ciphers, key exchange,
hashing, salting, least privilege, default
lockdown-mode, canonicalization, leaks,
buffer overflows, attacks (dictionary,mitm)

Cryptography
Symmetric and asymmetric crypto
Latest crypto standards
AES and SHA-3
Elliptic Curve Cryptography
Comparison of performance & robustness
Problems with older specs [des/md5]

Digital Certificates
Public Key Infrastructure (PKI)
Revocation and CRL
Attributes, certificate fields

Identity
Identity management
Identity and federation
Limiting dispersal of identity

Trust Services
Offloading work to trusted third parties
Whom to trust, how, and to what extent?
Trust server

Common Attack Patterns
Social engineering
Web app attacks and insider attacks
Human factors

ISO 2700x
International standards for identifying,
 documenting and countering threats
The proposed ISO 2700x series
Purpose of ISO 27001
Information Security Management Systems

Security Reviews
Conducting security reviews
Security threats – from inside and outside
Building a threat model

A Security Development
Process

Integral part of how we write software
Best practices as part of dev process
Ongoing influence

A Security Infrastructure
Process

Security policy in the enterprise
Secure deployment and operations
Advisories – CERT, vendor-specific

Design Patterns for Security
How to correctly design security features
into your software systems

Security and …
Storage, backups, networking, WiFi, user
interface, identity, kernel, etc.

Project
Designing a secure programmable
infrastructure for a sample system

One Day Intensive Training Course For Senior Knowledge Professionals

Angular Security and Authentication
CSP, Contexts, Sanitizers, Schema, XSS, CSRF, CORS,

XSSI, Authentication Workflow, Web-Authn
There are many design choices web developers make
every day that can positively/negatively impact web app
security. Security is not a task just to be left to security
experts (though having them on the team is certainly a
good idea). No, every web developer needs a strong
grounding in both web security in general and the
security of the web framework they use in particular.
This course supplies both for Angular app developers.
We start with a thorough review of general browser
security and then proceed to see how Angular can help
in building secure web applications, including exploring
in detail how to build authentication.

Angular has a compelling security story, responding
well to potential attack vectors. By default an Angular
CLI-generated app is very secure. As code is added,
security settings can be carefully adjusted as needed.

Authentication is one of the most complex and yet most
important aspect of any substantial Angular application.
By breaking it into manageable chunks, attendees will
appreciate how a well organized authentication
workflow should be, and see how to build this inside an
Angular application (using NgRx to store the auth
token). We also look at authorization and auditing.

Contents of One-Day Training Course

Target Audience
Angular / TypeScript
developers wishing to gain
a deeper understanding of
how web security in
general and security within
an Angular app in
particular work. Also those
who need to implement
authentication within an
Angular app.

Prerequisites
This is an advanced course
and as prerequisites
attendees must have an
understanding of security
fundamentals and general
experience of Angular
development

Overview of Browser Security
TLS / SSL
Input validation / output encoding
Client-side security
Open Web Application Security Project
Content Security Policy (CSP)
CSP feature tour
Directives
Policy definition
Integration with other specifications

Strict Transport Security
“Defines a mechanism enabling web sites
to declare themselves accessible only via
secure connections” - RFC

Web Cryptography
Running cryptographic algorithms inside a
browser (AES, RSA, HMAC, SHA, etc.)
A W3C recommendation
Overview of Angular Security

Angular’s security best practice
XSS
CSRF
Security contexts & sanitizers
“Security risk” marking in doc

Cross-Site Scripting (XSS)
Idea of malicious code-centric
Protecting the DOM
Tackling XSS in Angular

Sanitizers
Types of Angular security contexts
Role of sanitizers
Custom sanitizers
Review of schema for security definitions

Cross-Site Request Forgery
(XSRF)

What browser app needs to prevent XSRF
Angular HttpClient and XSRF

CORS
Cross-Origin Request and CORS request
A server-side feature / Enabling CORs

Cross-Site Script Inclusion
(XSSI)

JSON APIs and security
Preventing execution of JSON responses

Dev Tools & Security
Review of Chrome Devtools’ Security tab
Lighthouse
Security audits

Angular Authentication
Designing auth workflow for
 Angular app
Login / logout UI & status UI
API calls for auth and retrieving token
Storing JWT auth token / supply to APIs
AuthGuard for routing
Implementing Authentication

Important decisions / security implications
Public vs. secure routing targets
Using NgRx to manage the auth token
Two-factor authentication (using Twilio)
Extending with authorization and auditing

Web Authentication API
FIDO and W3C have released web-authn
Web-authn use by secure Angular app
Bringing together the ideas covered in
 this course to design and build a platform

https://www.w3.org/TR/webauthn/
https://fidoalliance.org/about/board/
https://www.twilio.com/
https://jwt.io/introduction/
https://angular.io/api?status=security-risk
https://angular.io/guide/security#best-practices
https://www.owasp.org/
https://github.com/ngrx/platform/

One Day Intensive Training Course For Senior Knowledge Professionals 97

GDPR & CCPA – A Developer’s Viewpoint
Privacy Primer, Privacy & Software Platforms,

Implementing Consent, SAR, Breach, Compliance
One of the most significant yet understated achieve-
ments of the European Union in practically helping its
500 million citizens is the GDPR – General Data
Protection Regulation (EU) 2016/679. The upcoming
California Consumer Privacy Act (CCPA), sometimes
called the “American GDPR”, is substantially similar to
the GDPR but has some differences. Though somewhat
bureaucreatic, when you understand how GDPR and
CCPA work, they are actually quite a sensible approach.
If you were asked to invent your own data protection
framework that genuinely protects citizen data privacy
rights, you probably would end up with something

close to GDPR/CCPA. Global companies are being
encouraged to implement GDPR on a world-wide basis
(with suitable local adjustments), because it is good for
their customers and to be ready for the equivalent rules
that are likely to be adopted by governments around the
world over the next few years.

This specialist course for software developers explores
how the architecture of their global software platforms
can be adjusted to accommodate implementing GDPR /
CCPA and similar. It focuses in on how to implement
software features needed to deliver robust data privacy.

Contents of One-Day Training Course

Target Audience
Experienced software
engineers who need to
implement GDPR-/CCPA-
related functionality in the
software platforms they are
developing.

IMPORTANT: This course
is not legal advice. This
course is written and
presented by a software
engineer, not a lawyer. To
get a complete all-round
explanation of all aspects
of GDPR/CCPA and to get
legal advice on how their
organizations should
implement these, attendees
also separately need to
consult with qualified
lawyers licensed for the
jurisdiction(s) relevant to
their project(s).

Prerequisites
Good all-round experience
of software development,
at a CTO, software
architect or senior software
developer level.

Privacy and Data Protection
What are we trying to protect?
What are the possible rights that could be
 conferred on citizens/companies?
 The idea of a data protection framework
 and how it might work
Categories of data / heightened protection
 for some (e.g. personal health data)
Introducing GDPR is like when recycling
 arrived - a bit of a change at first, soon
 became embedded in how we behave
A layman’s GDPR/CCPA Intro

What is the GDPR/CCPA/similar?
Organizations have responsibilities
Individuals have rights
What are data controllers, data processors
and data subjects? CCPA vs. GDPR
Lawful reasons for processing their data
Adequacy Decision & international

GDPR/CCPA &
Software Platforms

What are important features of
 GDPR/CCPA for cloud and enterprise
 software platforms?
GDPR/CCPA as one feature of the wider
 corporate software infrastructure

Privacy Model for
Software Platforms

Recommend a corporate privacy model,
 with input from engineering, ops, sales, ..
Want one clear global set of features /
 procedures that encompass global privacy
 requirements and can adapt in future

Categories
Personal data stored needs to be identified
 and assigned a category-how to implement
Some categories (e.g. health details) are
 required to have higher protection-how?

Consent: Asking
For/Recording

One lawful reason for storing/processing
an individual’s data is they have consented
How software platforms can ask use for
consent+record the granted/denied consent
SAR Handling (access request)
Data subject may ask for copy of their data
Software platforms should be adjusted to
electronically accept SARs and respond
How do we know individual making SAR
is really the data subject?
What data to collect (and what format)
How to return result via software platform

Handling a Data Breach
When data breach occurs, inform data
controller + data subject (if at risk)

Handling an Audit
An audit can check for GDPR compliance
– how dev/DevOps best prepare for audit

Specialist Issues
Personal data appearing in log files
What happens when employee joins/leaves
What happens with new customer
Paying attention to data retention policy

GDPR Software Project
We examine the practical steps needed to
 GDPR-enable a software platform
 become GDPR-compliant

https://www.linkedin.com/pulse/gdpr-after-deal-brexit-easier-send-eu-personal-data-o-tuathail/
https://www.exonar.com/ccpa/#av-layout-grid-6
https://dataprotection.ie/en/individuals
https://dataprotection.ie/en/organisations
https://privacyinternational.org/feature/1754/why-should-companies-facebook-commit-applying-gdpr-globally
https://securityintelligence.com/understanding-californias-consumer-privacy-act-the-american-gdpr/
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32016R0679&from=EN
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32016R0679&from=EN

	Mathematics Faculty
	Mathematics / Foundations
	Mathematics / Structure
	Technology / Code School
	Modelset
	Assembly
	IR
	Compiler
	Proof Assistant
	Shell
	Technology / Compute School
	OS
	Runtime
	Technology / Data School
	Query
	ORM
	Format
	Repository
	Technology / Networking School
	Protocol
	Connection
	Orchestrator
	Technology / UX School
	Client UI
	Server UI
	Hybrid UI
	RTC
	Graphics
	Media
	Workspace
	Operations / DevOps
	Toolchain
	Process
	Operations / Identity

